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Abstract

In this paper we summarize the elements of a numerical integration scheme for elasto-plastic
response of single crystals. This is intended to be compatible with large-scale explicit finite element
codes and therefore can be used for problems involving multiple crystals and also overall behavior of
polycrystalline materials. The steps described here are general for anisotropic elastic and plastic
response of crystals. The crystallographic axes of the lattice are explicitly stored and updated at each
time step. A plastic predictor–elastic corrector scheme is used to calculate the plastic strain rates on
all active slip systems based on a rate-dependent physics-based constitutive model without the need
of further auxiliary assumptions. Finally we present the results of numerous calculations using a
physics-based rate- and temperature-dependent model of copper and the effect of elastic unloading,
elastic crystal anisotropy, and deformation-induced lattice rotation are emphasized.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Taylor (1934), Orowan (1934) and Polanyi (1934) independently but at the same time
showed that the plastic deformation of crystalline metals is due to the dislocation-induced
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slip on preferred crystallographic planes and in preferred directions. Based on this physical
understanding, one can in principal model the deformation of a single crystal under pre-
scribed loads or calculate the forces required to induce a given deformation. However, the
number of possible slip systems is usually more than 5, which is the number of indepen-
dent variables in a general deviatoric deformation tensor increment, and therefore the
problem is under-determined. Bishop and Hill (1951a,b) partly overcame this difficulty
by using the principle of maximum plastic work. Lin (1957) and Lin and Ito (1966) empha-
sized the effect of elasticity and also showed that, in fact, various slip systems can become
active sequentially as the deformation progresses. Peirce et al. (1983) and Nemat-Nasser
and Obata (1986) used an explicit scheme to calculate and integrate the slip rates on all
slip systems. Finally Nemat-Nasser and Okinaka (1996) used a plastic predictor–elastic
corrector algorithm for the integration that converges for much greater time-steps than
those required in forward-gradient methods. For a thorough look at various aspects of
crystal plasticity see Havner (1994) and Nemat-Nasser (2004, Chapter 6).

These contributions and much of the other recent research (see Kaldindini et al., 1992;
Cuitiño and Ortiz, 1992; Bronkhorst et al., 1992; Beaudoin et al., 1993; Bate, 1999 and
Kuchnicki et al., 2006) are usually aimed at the prediction of the overall properties of poly-
crystalline metals and therefore employ some homogenization technique, most notably
Taylor averaging, or ad hoc arrangement of the single crystals. Furthermore they mainly
rely on power-law constitutive relations. Most recently McGinty and McDowell (2006)
discuss their work in relation to an earlier work by Nemat-Nasser et al. (1998b) where
the plastic predictor–elastic corrector method of Nemat-Nasser and co-workers (see
Nemat-Nasser (2004, Chapter 5), for detail discussion and references) have been applied
to bcc and fcc crystals. In addition, they do make contact with the yet earlier work of Ras-
hid and Nemat-Nasser (1992) that uses the plastic predictor with iteration and shows that
one or two iterations give excellent results. They also point out the substantial difference
between the plastic predictor method and the classical elastic predictor method, with the
latter having been used by, among others, Cuitiño and Ortiz (1992). An important feature
of the present method is the direct identification of the active slip systems which, in our
method, is calculated directly based on the current state of the crystal and the imposed
incremental strain. The classical method used in many of authors relies on energy minimi-
zation and an iterative algorithm. It is important to note that in rate-dependent plasticity,
there is no ambiguity as how to find all the active slip systems and the corresponding shear
rates. However, in the rate-independent plasticity, there are inherently multiple possible
sets of active slip systems whose identification requires additional assumptions; see Havner
(1994) for a comprehensive account.

Nemat-Nasser et al. (1998a,b) use the results of a large number of experiments reported
by Nemat-Nasser and Isaacs (1997) and Nemat-Nasser and Li (1998) for tantalum and
copper, respectively, over broad ranges of strain rates and temperatures, to develop phys-
ics-based and experimentally-supported rate- and temperature-dependent constitutive
models for slip rates in tantalum (with 48 potential slip systems) and copper (with 12
potential slip systems) crystals, calculating directly and unambiguously the slip rates of
all active slip systems (up to 24 for tantalum and 8 for copper). Here, we implement this
model for copper as a stand-alone single crystal or as a grain embedded in a polycrystalline
matrix, including lattice elastic anisotropy. We also develop a complete algorithm for
incremental calculation of stress, lattice orientation, temperature, and other necessary
internal variables for applications to problems involving finite strains and rotations. In
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summary, the present method has the following important features: (a) It uses experimen-
tally-supported physics-based constitutive models for the slip rates; (b) It uses the explicit
fully consistent plastic predictor–elastic corrector method; (c) It applies to fully aniso-
tropic crystal elasticity and plasticity for finite deformations; and (d) It directly identifies
all active slip systems and accurately produces their rates.

The flexibility and widespread availability of commercial finite element solvers has
enabled researchers to develop material models and easily implement them in such codes
without dealing with dynamics of any specific engineering problem. The integration of the
equation of motion and satisfying boundary conditions are done by explicit finite element
codes independently of the material constitutive routines. Therefore, in what follows we
have considered that the final objective is to prepare a material subroutine for large-scale
computations. In summary, we assume that the state of stress, the values of a specified set
of internal (history) variables and the increment of strain for a given time interval are
given and the stress state and the values of the internal variables at the end of this interval
are required. However, unless explicitly specified, the examples area solved independently
of any particular computational code. In the last part of the paper, several examples are
solved with the help of LS-DYNA (Hallquist, 1998) for illustration. In these examples,
zero traction boundary conditions are imposed and implemented by the finite element
code. In short, when all of boundary conditions are of the deformation type, the machin-
ery of a finite element solver is not required. In cases where a traction boundary condition
is prescribed, the enforcement of this boundary condition is relegated to the finite element
solver. The fortran subroutine is written such that it seamlessly integrates into the LS-
DYNA finite element code.
2. Kinematics

For finite-deformation calculations, most finite element codes present the deformation
increment during a time step at each integration point to the material constitutive routine.
This increment is expressed in the material element coordinate system (MECS) rotating
with the material element. For example, LS-DYNA uses the Hughes–Winget approxima-
tion bDHW(Hughes and Winget, 1980). Assume that an estimate of bD, the deformation rate
tensor in MECS (indicated with caret), is given to the constitutive subroutine. The objec-
tive stress rate, in the same coordinate system, can be calculated from

_̂s ¼ bL : ðbD � bDpÞ; ð1Þ
where bDp is the plastic part of the deformation rate, bL is the elastic modulus tensor in
MECS, and _̂s is the time derivative of the Kirchhoff stress. Note that ŝ ¼ J r̂ ¼ q0r̂=q
where J is the Jacobian of the deformation and r̂ is the Cauchy stress tensor. However,
the elasticity tensor has to be calculated in the MECS which is different than the crystal-
lographic axes coordinate system (CACS). The relation between MECS and CACS
changes as the plastic deformation rotates the material with respect to the lattice. To ad-
dress this and other related issues effectively, we write all equations and quantities in
CACS. Quantities expressed in CACS are indicated with a tilde. In this convention the
components of the elastic modulus tensor are simple and do not need to be adjusted with
lattice rotation which is an important issue in finite deformations and rotations. Denote
with R��T the tensor that rotates the MECS unit triad, ei, into the CACS unit triad, ai:
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ai ¼ R��T ei ¼
X3

j¼1

aj � ej

 !
ei ¼

X3

k;j¼1

ðaj � ekÞek � ej

 !
ei: ð2Þ

The notation R��T is chosen for compatibility with Nemat-Nasser (2004) which uses R** to
denote the rotation of the material through the crystal lattice due to the plastic deforma-
tion, based on the elasto-plastic decomposition F = F*Fp = F*R**Up = VeR*R**Up, fol-
lowing Lee (1969) and Willis (1969), as applied by Rice (1971) to single crystals. Note
that we have exploited the indeterminacy in the two rotation tensors and used
R��T ðt ¼ 0Þ tensor for the initial rotation from MECS to CACS. The deformation rate
in CACS is

eD ¼ R�� bDR��T : ð3Þ

The rotation tensor is updated at the end of each time step. It is the integral of the plastic
spin, or approximately,

R��T ðt þ DtÞ ¼ ð1þfWpDtÞR��T ðtÞ; ð4Þ

where the plastic spin is calculated from plastic slips, ca,

fWp ¼
X

_ca~ra
0 ¼

X
_ca 1

2
ð~sa

0 � ~na
0 � ~na

0 � ~sa
0Þ: ð5Þ

The summation is over all possible slip systems. Note that, once eDp ¼
P

_ca~pa
0 ¼P

_ca 1
2
ð~sa

0 � ~na
0 þ ~na

0 � ~sa
0Þ, is established based on the constitutive relation, fWp is uniquely

determined. This is an important fact that is often neglected or misunderstood. A thor-
ough discussion with supporting evidence and mathematical analysis can be found in Ne-
mat-Nasser (2004). Eq. (4) is suitable for small time steps. Since in explicit finite element
integration schemes, the time steps are provided by the code and generally are very small,
this approximation is quite acceptable. However, when the time step becomes large, one
may use an exact updating formula; for a detailed discussion of integration schemes with
spin, see Nemat-Nasser (2004, Chapter 5). The crystallographic unit vectors in (5), repre-
sented in CACS, are constant:

_~sa
0 ¼ _~na

0 ¼ 0: ð6Þ
3. Stress rate

The material subroutine has to return the updated stress tensor in MECS to the finite
element solver. We calculate all the quantities in the CACS. The change of coordinate sys-
tem is implemented at the end of the subroutine

ŝ ¼ R��T eSPR��; ð7Þ

where eSP is the second Piola–Kirchhoff stress tenser in CACS. The rate of this stress mea-
sure is simply

_~SP ¼ eL : ðeD �X _ca~pa
0Þ; ð8Þ
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where the plastic rate of deformation is

eDp ¼
X

_ca~pa
0 ¼

X
_ca 1

2
ð~sa

0 � ~na
0 þ ~na

0 � ~sa
0Þ: ð9Þ

The summation here is over all possible slip systems. The resolved shear stress on each slip
system is

sa ¼ eSP : ~pa
0: ð10Þ

The rate of this stress is

_sa ¼ _~SP : ~pa
0: ð11Þ

Therefore we can write

1

2l
_sa þ

X
H ab _cb ¼ da; ð12Þ

where

H ab ¼ ~pa
0 : eLn : ~pb

0 ; ð13Þ
da ¼ ~pa

0 : eLn : eD; ð14Þ

eLn ¼ 1

2l
eL: ð15Þ

Here, l is a normalizing modulus that coincides with the shear modulus in the isotropic
case. Note that because of the interdependency of the slip systems ~pa

0, only five of these
equations for the rate of resolved shear stresses are linearly independent. The tensor eLn

has a simple form for cubic materials. After subtracting bulk modulus tensor, which
can easily be dealt with independently, we can work with the deviatoric stress and strain
rate tensors only. For cubic materials eLn has the non-zero components:eLn

1111 ¼ 2a=3; eLn
1122 ¼ �a=3; eLn

1212 ¼ 1=2; ð16Þ
and others that can be deduced based on cubic symmetry (Wikström and Nygård, 2002).
Therefore, for any two symmetric and deviatoric tensors

c : eLn : d ¼ aðc11d11 þ c22d22 þ c33d33Þ þ 2ðc12d12 þ c23d23 þ c31d31Þ: ð17Þ
The parameter a is the anisotropy parameter and for copper is around 0.312. For isotropic
materials it is equal to 1. It can be calculated form simple measurements along the crys-
tallographic axes:

a ¼ C11 � C12

2C44

: ð18Þ
4. Integration schemes

Here we discuss the algorithms that are needed to integrate Eq. (12) for the plastic slip
rates. We use two separate approaches based on whether the plastic part or the elastic part
of the deformation is dominant. For the latter, we use an explicit forward-gradient
method. When the plastic deformation is dominant we use a plastic predictor–elastic cor-
rector method, following Nemat-Nasser and Okinaka (1996). However, note that since the
rank of the matrix Hab is only 5, when there are more than 5 active slip systems, we need
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auxiliary conditions to find the plastic strain rates. These are selected from the interdepen-
dency relations of the resolved shear stresses and in general are written asX

Mias
a ¼ 0: ð19Þ

There are exactly N � 5 independent such equations where N is the number of possible slip
systems. For details of these interdependency relations see Nemat-Nasser and Okinaka
(1996) or Nemat-Nasser (2004, Chapter 6). Written in an incremental form and along with
(12), these will provide all necessary equations to directly calculate all the slip rates with-
out any ambiguity. When there are more than 5 active slip systems or in fully-developed
plastic flow, we use this expanded set of equations. Otherwise, we consider that the mate-
rial in a transition regime and solve (12) without extra auxiliary equations, as they are no
longer necessary. Finally, when the elastic contribution is relatively significant (which can
only occur over a very small increment), we use an Euler forward-gradient algorithm with
smaller time steps.

The algorithm starts in the rapidly-changing regime. In this regime, a slip system is con-
sidered active when its slip rate is greater than 0.1% of the applied effective rate of defor-
mation ((2/3)D0:D0)1/2. When the number of active slip systems is between 1 and 5, the
routine uses the transition regime algorithm. If the number of active slip systems is 6 or
8, the routine uses the fully-developed plastic algorithm. Sudden changes in the deforma-
tion state of the crystal (induced by sudden changes in the loading regime) will reset the
method to the rapidly-changing algorithm for a finite number of steps (5 in most cases)
before reevaluation. These changes include the addition of new active slip systems and sig-
nificant changes in the slip rates. We have found out that when the change in the slip rates
is more than 30% of the current value, we need to use the rapidly-changing algorithm to
ensure stable calculations. This ratio is very large and can be adjusted to lower values if the
solution lacks numerical stability.

4.1. Transition regime

The plastic predictor assumption is that the stress-rate term in (12) is very small and
negligible, due to the fact that the magnitude of the shear modulus is much larger than
the stress components. If the rate of the resolved shear stress is large enough, then one
has to switch to forward-gradient method. Otherwise, one can start by solving the approx-
imate linear equations:X

H ab _cb
A ¼ da ð20Þ

for the first approximation of the slip rates, _cb
A. To find the elastically-corrected value of

the slip rates, integrate both (12) and (20) in time to obtain

1

2l
Dsa þ

X
H abDcb ¼ daDt; ð21ÞX

H abDcb
A ¼ daDt: ð22Þ

Subtraction givesX
H abcb

er ¼
Dsa

A � sa
er

2l
; ð23Þ
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where

ca
er ¼ Dca

A � Dca; ð24Þ
sa

er ¼ Dsa
A � Dsa; ð25Þ

Dsa
A ¼ F að _ca

A; c
b
A; T AÞ � saðt0Þ; ð26Þ

ca
A ¼ caðt0Þ þ Dca

A ¼ caðt0Þ þ sgnð _ca
AÞðh_caðt0Þ þ ð1� hÞ _ca

AÞDt; ð27Þ
T A ¼ T ðt0Þ þ DT A ¼ T ðt0Þ þ g

X
saDca

A: ð28Þ

Here, h is an integration parameter between 0 and 1, and g ¼ �g=qc, where �g is the ratio of
inelastic mechanical work that turns into heat (very close to 1 for most metals), q is the
mass density and c is the heat capacity at constant volume. The yield conditions on the
ath slip system is sa ¼ F að _ca; cb; T Þ which stands for F að _ca; c1; c2; . . . ; cN ; T Þ. The increments
in (27) and (28) are of the order of the time step. In general this equation can be solved
using the expressions

ca
er ¼ ð1� hÞ _ca

erDt; ð29Þ
T er ¼ ð1� hÞg

X
sb _cb

erDt; ð30Þ

sa
er ¼

oF a

o_ca

����
_ca
A

_ca
er þ

X oF a

ocb

����
ca

A

cb
er þ

oF a

oT

����
T A

T er: ð31Þ

After rewriting (23) in terms of error slip rates _ca
er and eliminating ca

er, Ter, and sa
er using

(29)–(31), we arrive at a new set of linear equations that can be solved for the error terms
_ca

er. However, observe that (29) and (30) (the decrement in resolved shear stress error due
to the error in the plastic strains and temperature) are of the order of time step multiplied
by the _ca

er (the decrement due to the error in the slip rates). The coefficients in (31) have to
be estimated as well but in the cases studied in this paper the first term is dominant. This
gives the following linear equation for the error terms:X

Gab _cb
er ¼

Dsa
A

2lDt
; ð32Þ

Gab ¼ ð1� hÞH ab þ 1

2lDt
oF a

o _ca

����
_ca
A

: ð33Þ

It must be noted here that if the second and third terms in (31) are not negligible, then (33)
can be simply modified to include those terms as well. For further detail see Nemat-Nasser
et al. (1998a).
4.2. Fully-developed plastic regime

When the number of active slip systems is greater than 5, Eq. (20) for predictor and (32)
are not enough to solve for all non-zero slip rates. We utilize the auxiliary conditions in
(19). To use with (23), we write (19) in incremental formX

MiaDsa
A ¼ 0: ð34Þ

Linearization gives the approximate formula
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X
Mia

oF a

o _ca

����
_caðt0Þ

D _ca
A þ

X oF a

ocb

����
caðt0Þ

Dcb
A þ

oF a

oT

����
T ðt0Þ

DT A

 !
¼ 0: ð35Þ

This can be rearranged using 26, 27, 27 in the general form:X
Cia _ca

A ¼ bi; ð36Þ

which can be combined with (20) without further manipulation. In many cases, these coef-
ficients can easily be calculated directly and explicitly; Nemat-Nasser and Okinaka (1996)
have calculated them for the power-law constitutive equation, and Nemat-Nasser et al.
(1998a) for the present physics-based model. The new matrix consisting of Hab and Cib

is inverted as a whole to give the plastic predictor values _ca
A. For the elastic correction,

write X
MiaDsa ¼ 0; ð37ÞX
Mia

oF a

o _ca

����
_caðt0Þ
ðD _ca

A � _ca
erÞ þ

X oF a

ocb

����
caðt0Þ
ðDcb

A � ca
erÞ

 

þoF a

oT

����
T ðt0Þ
ðDT A � T erÞ

!
¼ 0: ð38Þ

This givesX
Ciað _ca

A � _ca
erÞ ¼ bi: ð39Þ

Subtraction from (36) givesX
Cia _ca

er ¼ 0: ð40Þ

Although one can achieve a better approximation than (40) through linearization of (37)
around _ca

A, but the fact that the order of magnitude of the error terms in (40) is much smal-
ler than _ca

A makes this unnecessary. Eq. (40) supplement (32) to give the error values for all
active slip systems even when the number is larger than 5.

4.3. Rapidly-changing regime

When the elastic deformation is dominant, the plastic predictor approximation involves
significant errors. In this case, we use small time steps and solve (12) iteratively, assuming
the slip rates are the same as the previous time step initially and calculate an approximate
rate of the resolved shear stress from

_sa ¼ 2lðda �
X

H ab _cbðt0ÞÞ: ð41Þ

We update the resolved shear stresses by integration of the left-hand side of (41), and sub-
sequently the slip rates on all slip systems are calculated through

_ca ¼ ðF aÞ�1ðsa; cb; T Þ: ð42Þ

If the difference between the new slip rates and those used in (41) from the previous time
step is appreciable, this step is repeated until convergence is achieved. Although the
amount of the calculations at each step seems to be far less than the previous two regimes,
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the iteration has to be performed many times, whereas there are no iterations required in
the fully-developed plastic or the transition algorithms.
4.4. Stress tensor update

At the end of any of the above methods, we update the resolved shear stresses. We select
five independent equations from those available in (10) and solve them for the components
of the stress tensor. Finally the lattice orientation is updated through (4) and using (7) to
calculate the stress tensor in material element coordinate system finishes the required steps
in the constitutive algorithm.
5. Physics-based material model

A dislocations-based model of plasticity that includes both temperature- and strain-rate
effects has been developed for fcc metals by Nemat-Nasser and Li (1998), heavily drawing
from a large set of experimental data on OFHC copper over broad ranges of strain rates
and temperatures. The model has also been detailed by Nemat-Nasser (2004) in a recent
book; a brief account has also been included in a more recent paper by Nemat-Nasser
et al. (2006). For completeness, however, we outline the basic results in this section.

We define the slip rate of a given slip system by the Orowan equation, _c ¼ bqmv, where v

is the average dislocation velocity, qm is the density of the mobile dislocations producing
the slip, and b is the magnitude of the Burgers vector. The average dislocation velocity is
expressed in terms of the density of the short-range barriers that the dislocations must
overcome in their motion, and their average activation energy, DG. For fcc and some
hcp metals, the total dislocations that intersect the slip plane are the primary short-range
barriers to the motion of the mobile dislocations lying on the slip plane. To estimate this
average velocity, we divide the average spacing of the short-range barriers, ls, by the sum
of the average waiting time to cross the barrier, tw, and the running time, tr, to move
between the barriers (Regazzoni et al., 1987), v = ls/(tw + tr). Here, we neglect tr and set
tw ¼ x�1

0 expðDG=kT Þ, where x0 is the total attempt frequency (which depends on the dis-
location core structure), T is the absolute temperature, and k is Boltzmann’s constant.
Combining the above expressions, we arrive at the following estimate for the slip rate:

_c ¼ _c0

l0s
l0

2

m

 !
expð�DG=kT Þ; ð43Þ

l0s ¼
ls

l0

; ð44Þ

l0m ¼
lm

l0

; ð45Þ

where _c0 ¼ bx0=l0 is a reference slip rate, l0 is some convenient reference length corre-
sponding to a reference strain rate, and lm ¼ q�1=2

m is the average spacing of the mobile dis-
locations. For fcc crystals, one may use the average spacing of the total dislocations at
some reference state for l0. In Eqs. (43)–(45), ls and lm are viewed as natural length scales
that characterize the microstructure and dislocation activities, evolving with the tempera-
ture and deformation histories. They thus require evolutionary constitutive descriptions.
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For a typical slip system, we use the following expression to define the activation energy
of the dislocations associated with this slip system:

DG ¼ G0 1� s� sa

ŝ

� �ph iq

; ð46Þ

ŝ ¼ G0

bkl
¼ ŝ0

l0
; ð47Þ

ŝ0 ¼
G0

bkl0

; ð48Þ

l0 ¼ l
l0

: ð49Þ

Here, s is the resolved shear stress in the slip direction, sa (the stress due to the long-range
barriers) is the resistance imposed on the moving dislocations by the elastic stress field of
all dislocations and defects, G0 is the total short-range barrier’s energy, k and ŝ0 ¼ G0

bkl0
, p,

and q define the structure of the short-range barriers. In (47) and (49), l0 is another nor-
malized length scale that characterizes the distribution and structure of the short-range
barriers. Eq. (46) has been obtained empirically by the Nemat-Nasser and co-workers,
but it has a long history going back to Ono (1968) and Kocks et al. (1975). Ono suggests
0 < p 6 1 and 1 6 q 6 2 for most energy barrier profiles. We have now extensive experi-
mental data for many bcc, fcc, and hcp metals, all which support Ono’s suggestion; see
Tables 4.8.1 and 4.8.2, pp. 235 and 238 of Nemat-Nasser (2004). The parameter k is ab-
sorbed in ŝ0 which is established experimentally.

The resistance of the long-range barriers, sa, is referred to as the athermal component of
the slip resistance. Being due to the elastic field of the dislocations and defects, its depen-
dence on temperature is through the temperature dependence of the elastic moduli, espe-
cially the shear modulus, l(T), and the temperature-history dependence of the
microstructure, e.g., dislocation density. We set

sa ¼ ĝðqt; . . .ÞlðT Þ=l0; ð50Þ

l0t ¼
lt

l0

; ð51Þ

where qt is the average total dislocation density, the dots stand for parameters associated
with other defects and impurities that help to create an elastic stress field, l0 is a reference

value of the shear modulus, and lt ¼ q�1=2
t is another natural length scale that correspond

to the average spacing of all dislocations. To simplify this expression, we use the effective
plastic strain associated with all slip systems, ceff, which is a non-decreasing quantity, as
our ‘‘loading parameter”, and approximate (50) by

sa ¼ s0
a þ s00

a cn1
eff ; ð52Þ

viewing s0
a, s00

a , and n1 as constitutive parameters to be fixed experimentally.
Eqs. (43)–(52) now define the slip rate in terms of the resolved shear stress, s, temper-

ature, T, and four normalized length parameters, l0, l0m, l0s, and l0t. These length scales
directly relate to the physics of dislocation-induced plastic deformation of metals. Their
evolution with deformation and temperature must be modeled based on experimental
results and physical arguments. Expression (52) accounts approximately for the length
scale l0t. To obtain approximations for the other three length scales, note that the disloca-
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tion density on a slip plane increases with continued plastic slip and decreases with increas-
ing temperature, T. As a first approximation, we set

l0s
l0

2

m

� l0 � 1

f ðceff ; T Þ
; ð53Þ

where the function f must be increasing with ceff, and decreasing with T. It has been found
by Nemat-Nasser and Li (1998) that the following approximation may be used for OFHC
copper:

f ðceff ; T Þ � 1þ a0 1� T
T m

� �2
 !

cm
eff ; ð54Þ

where a0 and m are constitutive parameters and Tm is the melting temperature.
6. Application: modeling the response of copper as a single crystal and a grain in a

polycrystalline film

In this section we present the results of calculations on the constitutive behavior of sin-
gle crystal copper in various loading condition. Two sets of material parameters for the
physics-based constitutive models described in the previous section are used. The follow-
ing values are the same for both cases, the bulk modulus K = 140 GPa, the shear modulus
l = 80 GPa, the energy barrier parameters p = 2/3, q = 2, and k/G0 = 4.9 � 10�5/K, the
constant power for dislocation spacing evolution m = 1/2, the reference slip rate
_c0 ¼ 2� 1010=s, the melting temperatures, Tm = 1350 K, and finally the parameter for
temperature rise calculation due to the plastic work g = 0.433 K/J/m3 equivalent to
100% of the inelastic mechanical work turning into heat. The last parameter is only used
for high-rate cases where due to the short time scales involved the dissipated plastic work
heats the material locally and adiabatically. In all cases the integration parameter is taken
constant h = 0.1, and the material is considered to be initially at room temperature
T0 = 296 K. When the full elasticity tensor of copper with cubic symmetry is considered,
the value of the anisotropy parameter is a = 0.312, where for elastically isotropic cases
a = 1 is used. In the first set of calculations we used the following values for the remaining
parameters s0

a ¼ 5 MPa, s00
a ¼ 70 MPa, n1 = 0.5, ŝ0 ¼ 130 MPa, a0 = 1.8. In comparison,

to reproduce the experimental results reported in Hommel and Kraft (2001) these param-
eters are chosen based on the continuum values reported in Nemat-Nasser and Li (1998):
s0

a ¼ 10; s00
a ¼ 220 MPa, n1 = 0.3, ŝ0 ¼ 46 MPa, a0 = 20. Also to be consistent with Hom-

mel and Kraft (2001) experiments, we used a constant strain rate D11 = 10�7/s. The strain
rate history for other cases was prescribed as ((2/3)D0:D0)1/2 = Af(t), where A is a dimen-
sionless constant and in most case equal to 1, and f(t) is a function of time shown in Fig. 1.
This function includes periods of different rates as well as unloading and reverse-loading
portions.

The results in Fig. 2 show the stress components when the deformation rate tensor ori-
entation is chosen such that initially only one slip system can be active:
~s1

0 � ~n1
0 ¼ ð1=

ffiffiffi
6
p
Þða1 � a2Þ � ða1 þ a2 þ a3Þ. The deformation rate tensor is given by

ðA ¼ 1=
ffiffiffi
3
p
Þ



-6000

-4000

-2000

0

2000

4000

6000

0.E+00 1.E-04 2.E-04 3.E-04 4.E-04 5.E-04
t [s]

f(t) [/s]

Fig. 1. Strain rate history as a function of time for variable-rate calculations.

-400

-200

0

200

400

0.E+00 1.E-04 2.E-04 3.E-04 4.E-04 5.E-04
Time [s]

Stress
Components

[MPa]

11

11

22
33

31

2322

33

23

12

12

31
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bD ¼ f ðtÞ
�1=2 0 0

0 1=2 0

0 0 0

264
375: ð55Þ

And the transformation tensor is initially given by

R��T ðt ¼ 0Þ ¼
0:90825 �0:09175 0:40825

�0:09175 0:90825 0:40825

�0:40825 �0:40825 0:8165

264
375: ð56Þ
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Note that the columns of (56) are the vector components of the crystallographic unit triad
in MECS. Fig. 3 shows the slip rates of all 12 slip systems, the components of the trans-
formation tensor R��T ðtÞ as the deformation progresses, and the change in Euler angles
(in �) of this rotation tensor as a function of the effective strain. Note the significant reori-
entation of the lattice with respect to the material element. The number of active slip sys-
tems start with 1 but increases by steps of 1–6.

The effect of the loading direction with respect to the crystallographic axes is shown in
Fig. 4. Here, the effective stress s ¼ ðð3=2Þŝ0 : ŝ0Þ1=2 ¼ ðð3=2Þ~SP 0 : eSP 0Þ1=2 is plotted versus
the effective strain cðtÞ ¼

R t
0
ðð2=3ÞD0ðnÞ : D0ðnÞÞ1=2dn. The loading is applied along the

material X-axis which has the crystallographic indices shown in Fig. 4 (A = 1):
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(57) with material X-axis along the crystallographic axis shown in the graph. (a) The effective stress versus the
effective strain. (b) The temperature increase with time.
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bD ¼ f ðtÞ
1 0 0

0 �1=2 0

0 0 �1=2

264
375: ð57Þ

The R��T ðt ¼ 0Þ can be easily calculated for all these cases. Also shown in Fig. 4 is the tem-
perature history for these four cases.

Although the effect of the cubic symmetry of the lattice on the plastic response of the
crystal is clear from Fig. 4, we show here that the elastic anisotropy also affects the
mechanics of the deformation, especially during elastic loading and unloading. To observe
this, see Fig. 5, where the effective stress is plotted versus effective strain when the crystal is
loaded along [100] axis according to Eq. (57). The difference when the crystal is considered
elastically isotropic and when it has the physical cubic symmetry is demonstrated. When
the loading is not proportional, that is when the principal axes of the deformation change
through the course of the deformation, this difference becomes more pronounced.

The correct elastic correction based on (32), (33) and (40) is equally important in these
situations. When the elastic share of the deformation is significant, these corrections
change the calculated response. Moreover the error due to the omission of these correc-
tions can be accumulated. The examples shown in Fig. 6 demonstrate this effect. Here,
the axial stress versus axial strain and effective stress versus effective strain are plotted
for two different kinds of loading.

When the elastic and/or plastic response of a material is anisotropic, the choice of
appropriate boundary conditions becomes important. We have used displacement bound-
ary conditions for all the examples in this paper up to this point. The stress components
shown in Fig. 7 are also for such boundary conditions. Here, the deformation rate tensor
according to (57) is applied along two different axes, namely [11 0] and [111]. Although the
applied deformation in both cases is symmetric around the material X-axis, the stress
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Fig. 5. Comparison between the responses of a single crystal when the elastic modulus tensor is considered
isotropic versus when it has cubic symmetry. The plastic flow is not affected much. However the elastic loading
and unloading are significantly changed. In this example the FCC crystal is loaded along its [100] axis according
to Eq. (57).
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tensor is significantly different. In [110] loading, though for most of the course of the
deformation there are 8 active slip systems, the 22 component of stress is non-zero only
for a short time during the unloading and reverse loading. On the other hand in [111]
loading, though only a maximum of 6 slip systems become active, the stress tensor also
has symmetry around the X-axis. For more asymmetric loading such as [112], some of
the shear components of the stress tensor become non-zero as well, in this case the 31 com-
ponent. In other words, except in special cases, symmetry of loading in the stress space is
not compatible with it in deformation space.

As a further example and to demonstrate the boundary condition effect, we tried to
reproduce the experimental results of Hommel and Kraft (2001) on thin copper films.
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Following Nemat-Nasser et al. (2006), the material parameters that were experimentally
established by Nemat-Nasser and Li (1998) were used. Unlike Nemat-Nasser et al.
(2006), where isotropic elasticity with an adjusted axial Young’s modulus is used for sim-
ulation, here we used the physical elasticity modulus for copper with cubic symmetry. The
slope of the elastic segment of the curve is reproduced automatically and without further
adjustment. Moreover the boundary conditions are selected such that to simulate the con-
ditions of the experiment as closely as possible. To this end, we applied traction free
boundary conditions on the free surfaces of the film, while applying zero displacement
in the plane of the film and prescribed motion along the loading direction with
D11 = 10�7/s. The only difference in material parameters between this example and other
examples in this work are s0

a ¼ 10; s00
a ¼ 220 MPa;n1 ¼ 0:3; ŝ0 ¼ 46 MPa;a0 ¼ 20, which are

more appropriate for annealed copper. The results agree very well with the experimental



0

100

200

300

400

0.0 0.5 1.0 1.5 2.0

Infinitesimal Strain [%]

Axial Stress 
[MPa]

Hommel and Kraft (2001)

Nemat-Nasser et al. (2006)

Current method

(100) crystals

(111) crystals

Fig. 8. Comparison between the experimental data from Hommel and Kraft (2001) and the method presented in
Nemat-Nasser et al. (2006) and the current work. The (100) and (111) crystals are loaded along [001] and ½�211�
axes, respectively. Since the sample is a film, of the two other boundary conditions, one is prescribed as zero
displacement boundary while the other is a traction free surface.

A.V. Amirkhizi, S. Nemat-Nasser / International Journal of Plasticity 23 (2007) 1918–1937 1935
data and are plotted in Fig. 8. These results are calculated using LS-DYNA with the user-
defined material subroutine for plastic predictor–elastic corrector explicit integration
scheme for crystal plasticity model mentioned previously. In addition to the elastic slope
being automatically reproduced, the effect of boundary conditions is clearly seen in this
example in comparison with the results of Nemat-Nasser et al. (2006). In the present cal-
culations, the same material properties are used for both examples, including the elasticity
tensor with cubic crystal symmetry and the athermal yield stress at zero strain. These
quantities are adjusted in Nemat-Nasser et al. (2006) based on physical considerations.
For example, the elasticity tensor used in this reference is isotropic and the shear modulus
is adjusted for each crystal orientation. While for this special case with small deformations
one can do such manual adjustment in the elasticity, this is not possible when finite rota-
tions and deformations are involved with elastic anisotropy. Furthermore, the exact phys-
ical boundary conditions are used in the present calculations, while in the previous work
an equivalent prescribed deformation is used for all cases.

7. Summary

A framework for numerical explicit integration of various constitutive models of crystal
elasto-plasticity is developed and used. A physics-based material subroutine for FCC crys-
tals is coded in FORTRAN and used independently or as a user subroutine for LS-
DYNA. Various examples show the applicability and power of the proposed method.
Some comparison with recent experimental results and numerical models are presented.
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