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ABSTRACT

Based on the results of an extensive series of systematic experiments on commercially pure tantalum (bcc
crystals), a physically-based, rate- and temperature-dependent constitutive model is proposed for bee single
crystals and is applied to simulate the experimental results, using the Taylor averaging method. The model
calculation is based on a new efficient algorithm for the numerical solution of the finite deformation of bee
single crystals, involving up to 48 potentially active slip systems. The accuracy and efficiency of the proposed
algorithm are checked through comparison with the results of the conventional explicit Euler time-
integration scheme, using a very large number of timesteps. The model effectively simulates a large body
of experimental data, over a broad range of strain rates (107 -4 x 10%/s), and temperatures (77 to 1300 K),
with strains exceeding 100%. using very few adjustable parameters whose values are fixed at the outset for
a given material. All other involved constitutive parameters are estimated based on the crystal structure
and the physics of plastic flow. ¢ 1998 Elsevier Science 1.td. All rights reserved.

Keywords: constitutive behavior, B. crystal plasticity, B. polycrystalline material, B. numerical algorithms,
C. bee crystal.

1. INTRODUCTION

A fundamental approach to develop constitutive models for elastoplastic flow of
polycrystalline metals requires the following basic ingredients :

o description of the kinematics of slip-induced plastic flow and the accompanying
elastic lattice distortion, based on the microstructure of the crystal ;

e constitutive relations defining the slip rates in terms of the applied stress, existing
temperature, and the microstructure of the polycrystal;

e an efficient and accurate computational algorithm for incremental calculation of
the crystal deformation and stress state ;

e an averaging model to obtain the polycrystal deformation and stress measures in
terms of the corresponding single-crystal quantities ;

o reliable experimental results over a broad range of strains, strain rates, and tem-
peratures, in order to fix the constitutive parameters and check the model capability.

+ To whom correspondence should be addressed.
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Based on the fundamental crystal structures, the kinematics of crystal plasticity has
been developed by Hill (1966), Rice (1971), Hill and Rice (1972), and Hill and Havner
(1982). Reviews and references are given by Havner (1992).

In the application of the theory to rate- and temperature-dependent crystals, consti-
tutive relations are required to define the slip rates in terms of the stress, temperature,
their histories, and the microstructure of the crystal. Generally, these relations have
been phenomenological and empirical, being based essentially on a power law or its
variants; see, e.g., Hutchinson (1976), Pan and Rice (1983), Peirce et al. (1983),
Nemat-Nasser and Obata (1986), Rashid er al. (1992), Zikry and Nemat-Nasser
(1990), and Anand and Kalidindi (1994).

Crystallographic slip generally occurs by the motion of dislocations. In this event,
the dislocations must overcome short-range barriers due to the lattice structure (the
Peierls barrier) and other dislocations or point defects, as well as the stress field
induced by the long-range barriers such as forests of dislocations, point defects, and
grain boundaries. Recently, Nemat-Nasser (1996) has suggested dislocation-based
micromechanical models to describe the slip rates in bec and fee crystals, which
directly account for the athermal and thermally activated barriers to the motion of
dislocations (barriers which can be overcome by dislocations through their thermal
energy are referred to as “‘thermally activated barriers’). An objective of the present
work is to apply his bcc model to commercially pure tantalum, and then compare the
results with experimental data over a broad range of strains, temperatures, and strain
rates. The experiments are performed using the recovery Hopkinson technique which
allows development of both adiabatic and isothermal flow stress of metals at high
strain rates and at temperatures ranging from 77-1300 K ; see Nemat-Nasser e¢r al.
(1991) and Nemat-Nasser and Isaacs (1996).

The computations are performed using a suitable version of an efficient algorithm
which has been proposed by Nemat-Nasser and Okinaka (1996) to solve finite-
deformation problems of fcc single crystals. In the case of bce crystals, there are, in
general, forty-cight potential slip systems, many of which usually become active
during crystal deformations. For a bee crystal, it is usually assumed that {110}, {112},
and {123} are the families of the primary slip planes, with the family (111} defining
the slip directions. In the proposed algorithm, the finite-deformation problem is solved
incrementally by first tentatively assuming that the total deformation increment is
solely due to plastic slip, and then correcting this solution to account for the
accompanying elastic lattice distortion. The approach is referred to as the “plastic-
predictor, elastic-corrector method™. The resulting solution fully accounts for the
rigid-body rotation of the lattice.

The approach that has generally been followed in past studies to obtain, in a
consistent manner, the nonlinear finite-deformation properties of a polycrystal from
those of the single-crystal constituents, is based on the linearization of the nonlinear
constitutive relations which are then evaluated using an implicit time-integration
technique ; Peirce er af. (1983). Following the method proposed by Iwakuma and
Nemat-Nasser (1984) for the rate-independent slip theories, Nemat-Nasser and Obata
(1986) established a self-consistent approach for polycrystals, which is based on
such a linearization of the constitutive relations of the corresponding single-crystal
constituents. Although a forward-gradient (tangent-modulus) method of this kind
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yields useful results, it leads to a stiff system of constitutive equations, which requires
very small time increments in order to obtain the desired accuracy and stability in the
numerical implementation. When a large number of slip systems are involved, this
approach becomes exceedingly inefficient, as it necessitates very small time increments.
On the other hand, the approach of a plastic-predictor followed by elastic-corrector
algorithm allows for large timesteps when more than five slip systems are active. This
is combined with the forward-gradient method by Nemat-Nasser and Okinaka (1996),
to produce a computational tool which has both efficiency and accuracy. In the
present work, we apply this method to solve the bcc-crystal problem, and use the
solution to obtain the polycrystal response employing the Taylor averaging method.
Asis well known, at very large plastic deformations, the Taylor method yields accurate
results. This is borne out in the present work by the excellent correlation that is
obtained between the experimental and theoretical results for strain rates ranging
from 0.001 to 40,000/s, temperatures from liquid nitrogen (77 K) to 1300 K, and
strains exceeding 100%. On the other hand, the Taylor averaging method over-
estimates the flow stress at the initial yield point. This is adjusted for by suitable
tuning of the initial yield stress.

2. FUNDAMENTALS

2.1.  Kinematics

In this section, the kinematics of the finite deformation of crystals is briefly reviewed.
Appendix A provides a more detailed account. The general account of elastic-plastic
deformation of crystals at finite strains and rotations is found in Hill (1966), Rice
(1971), Hill and Rice (1972), Hill and Havner (1982), and, more recently, in Havner
(1992).

The total deformation gradient, F, measured relative to the undeformed con-
figuration of the crystal, is divided into a non-plastic (elastic plus rigid-body rotation)
deformation gradient, F*, and an inelastic (plastic) deformation gradient, F?, as
follows:

F = F*F". 2.1
The total velocity gradient is defined by
L=FF "', (2.2a)

where dot and the superscript — | stand for the time derivative and the inverse,
respectively. Similarly, the non-plastic velocity gradient, L*, and the plastic velocity
gradient, L”, are given by

L* = f*f* !, (2.2b)
and
| L T U (2.2¢)

where the hat is used to denote that the velocity gradient is measured with respect to
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the initial undeformed configuration of the crystal lattice. Substitution of (2.1) and
(2.2b,¢) into (2.2a) yields

L = L*+F*L/F* ', (2.2d)

It is assumed in this work that the plastic deformation is solely due to the crystalline
slip. Hence, the plastic velocity gradient, L”, is given as the sum of the slips on all slip
systems. We assume that the primary slip systems in bcc single crystals are {110}
(1. {112} <111, and {123} {111}. It thus follows that there are 48 primary slip
systems in a bce single crystal. Hence,

48
Lr=Y 3019, (2.3)
PP

where 7 is a slip rate, and 1§ defines the corresponding slip system, given by
I =s” ®n{® (nosum on a). (2.9)

Here, s and n are unit vectors defining the slip direction and the slip-plane normal,
respectively, and the subscript 0 stands for the initial configuration of the lattice. In
Table 1, the numbering of the slip systems is summarized. In (2.3) the summation
over all slip systems is justified since ' = 0 if the o’th slip system is inactive.

For the present application, it is reasonable to assume that the elastic strain is very
small. By polar decomposition, F* = V*R*, and setting V* = 1+¢, observe that the
elastic strain, ¢, measured in the rotated lattice, is infinitesimally small, where R* is
the rigid-body lattice rotation. Thus, substitution of (2.3) into (2.2d) with the assump-
tion of small elastic strain, results in

48
L=L*+ Z I [CX (2.5a)
PN
where
I = R¥I{R*. (2.5b)

For small elastic strains, the non-plastic velocity gradient is written as
L* = §4+eQ* — Q¥+ OQ*, (2.6a)
where * is the rigid-body lattice spin rate, defined by
Q* = R*R*". (2.6b)

The symmetric and antisymmetric parts of the total velocity gradient, L. are written
as D and W, respectively. These are given by

48
D =D*+ 3 7"p™, (2.7a)
aw= |

and
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Table 1. Numbering of slip systems

(1) (110)[T11] 25 (123)[117]
2 (1)1 26) (123)[111)
3) (T[] @7 133)[111]
@ o111 (28) (123)[111]
5) (o117 (29) (132)[171]
6 (10n[T11] (30) (132)[117]
(7 (1ohH[111) 31 (132)[111]
(8) (10D[1T1] (32)  (139)[111]
©9)  (O1D[11T] (33)  (213)[11T]
(10)  (O1D[1T1] (34)  (313)[1T1]
(1) (OIT)[111] (35 QI3)[111]
(12) O[T (36) (213)[111]
(13)  (12)[11T) (37)  (23D[1T1]
14y  (T12)[(7n (38)  (23D[11T]
(15 (1711 (39)  (23D[111]
(16)  (L1D)[111] 40) (23D)[T11]
(17 (12D[171] @1 (312)[T11]
(18)  (T2D)[117) 42) (G12)[111]
(19)  (13D[111] 43) (3T2)[11T]
(20)  (12D[T11) 44) (13T
@ QID[It @5)  (32D[T11]
(22)  CGIy[i 46) (32D[111]
23)  QIH[IT] @7 (3ZH[1T]
Q4 DT 48)  (32D)[1T1]
W=Wp Y powt, (2.7b)

where D* = §+¢Q* —Q*g and W* = Q¥ are the corresponding non-plastic defor-
mation and spin rates, respectively, and p® and w are the symmetric and anti-
symmetric parts of the rotated slip system tensor, /', respectively.

2.2, [Interdependency of slip systems

In this subsection, the interdependency of slip systems is briefly discussed. The 48
slip systems are divided into four families, according to the slip directions [111], [T11],
[IT1], and [111]. Then, 12 slip systems belong to each family, and the slip-plane
normal, n, of the slip systems in each family lies on the plane perpendicular to the
corresponding slip direction. It thus follows that only two of the 12 slip systems in
each family are linearly independent, since a proper linear combination of two arbi-
trarily chosen slip-plane normals can represent the slip-plane normals of the other ten
slip systems. Hence, ten conditions for p™”s are obtained in each of the families,
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leading to a total of 40 conditions for p’s. These 40 conditions are listed in Appendix
B, according to the numbering system given in Table 1.

In order to find additional interdependency conditions between the slip systems
which belong to different families, we examine the symmetric parts p® of the slip
system tensors 1, for o = 1,2,...,48, more closely. From the definitions (2.4) and
(2.5b) of the slip system tensor, 1 and p'” are traceless, since s and n are
orthogonal pairs. A symmetric second-order tensor with a zero trace, has only five
independent components. Hence, p™’s may be viewed as elements of a five-dimen-
sional linear space. Therefore, there must exist at least 43 linear interdependency
conditions among these 48 p®’s. In other words, apart from the 40 interdependency
conditions listed in Appendix B, there are at least three more interdependency con-
ditions between the p®’s. As shown in Appendix C, these additional conditions are :

p +p7 —p =0, (2.8a)
p? —p® 4pih =0, (2.8b)
and
pP +p® —plo =0, (2.8¢c)

3. PHYSICALLY-BASED MODEL OF CRYSTALLINE SLIP

In finite-deformation crystal plasticity, the power law, or its variants, has been
widely used to model rate-dependent crystalline slip. Although this phenomenological
model provides a good approximation of the experimentally observed stress-strain
relations in certain strain-rate and temperature ranges, it is empirical and of limited
applicability. In a recent effort, based on a series of novel experiments, Nemat-Nasser
(1996) suggests dislocation-based constitutive models for the slip rates of fcc and bee
crystals, which appear to have a broad range of applicability. A continuum version
of the bcc model has been applied by Nemat-Nasser and Isaacs (1996) to represent
the flow stress of the commercially pure polycrystal tantalum with considerable
success. A similar success has been achieved in modeling OFHC copper, using the fcc
version of the model; see Nemat-Nasser and Li (1997). The strain rate and tem-
perature ranges in these applications, span from 0.001 to 40,000/s and 77 to 1300 K,
respectively, with strains exceeding 100%. Most of the constitutive parameters are
estimated on the basis of the crystal’s microstructure, leaving only a few parameters
to be evaluated empirically.

In the present work, the dislocation-based physical model of Nemat-Nasser (1996)
is applied to represent rate- and temperature-dependent crystalline slip in bee single-
crystal tantalum, and the results are used to simulate the experimental data reported
by Nemat-Nasser and Isaacs (1996), and Chen et al. (1996). It turns out that much
better correlation with the experimental results is achieved through the crystal plas-
ticity model than the corresponding continuum counterpart. An outline of the bcc
model is presented in what follows.

Slip in a given direction of a crystal, occurs by the motion of dislocations on the
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corresponding slip plane and in the corresponding slip direction. In this process,
dislocations have to overcome the barriers due to the lattice stress field (the Peierls
resistance), as well as the stress field of other dislocations and defects. Assume that
the resistance to the thermally activated dislocation motion is solely due to the lattice
structure, being temperature- and strain rate-dependent. The strain hardening, both
self- and latent-hardening, is therefore due to the long-range effects.

Slip in tantalum is predominantly by the motion of screw dislocations; see, e.g.,
Dorn et al. (1965), and Hoge and Mukherjee (1977). A double kink is usually formed
first and then the dislocation moves laterally. The frequency of occurrence of such an

event is given by
AG™
0™ = w,exp <_ ET) G

where w,, k, and T are the attempt frequency, Boltzman constant, and temperature,
respectively, and AG® is the activation energy associated with the ath slip system. In
general, the time required for the dislocation to propagate from one Peierls barrier to
the next, is much smaller than the waiting time to overcome the barrier. Hence, the
average dislocation velocity may be approximated by

i AG(&)
& = d™w,exp | — P (3.2)

where d" is the average distance between dislocation barriers, depending, in general,
on the particular slip system. For the Peierls barrier, we set d* = 5™, where b is
the magnitude of the corresponding Burgers vector.

It is assumed that the slip rate of the «th slip system may be approximated by

};(x) — h(«xp’(nle-.m, (3.3,&)

where p!* is the density of the mobile dislocations, and ¢ is their average velocity,
both associated with the ath slip system. It hence follows that

3 (%) o) AG "
«I‘ = ’}'/’ exp - z’f - (33b)
where
70 = b"dYp Y, (.4

is the reference slip rate. In the current work, the model discussed by Kocks et al.
(1975) for the thermally activated part of the flow stress is employed. The activation
energy, AG™, in this model is given by

* (0N P) g
AG(a{) — Gz]&) {] —<‘C:&)) } , (35)
T

@ = |t &) — g, (3.6)

where t** is defined by
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Here, p and ¢ are parameters which define the shape of the energy-barrier profile ; see
Kocks et al. (1975). Ono (1968) suggests p = 2/3 and ¢ = 2 for most profiles. These
are the values used in Nemat-Nasser and Isaacs (1996) and also here in Section 5. In
(3.6), ©® is the resolved shear stress,

™ =g:p™, (3.7)

where a is the Cauchy stress, and t{* is defined by

(o}

=1, p"™, (3.8)

where 7, is the stress field due to the long-range barriers, such as grain boundaries and
farfield forests of dislocations. The quantity £ is the stress at which the dislocation
overcomes its barrier without the assistance from thermal activation. [ts magnitude,
in general, may depend on the particular slip system, although in the present work
we assume it to be a material constant, to be fixed empirically. Its value should be
about a third of the values used for the continuum model by Nemat-Nasser and Isaacs
(1996), since the average Taylor factor is about three. Similarly, in our modeling in
Section 5, we assume G §*' = | ¢V which is the value used by Nemat-Nasser and Isaacs
(1996) for the continuum model.

Substitution of (3.5) and (3.6) into (3.3b), and since ?'* and " have the same sign,

yields
520 . (2) Yoy () ] G([)" ’T(”!‘—‘C;’) ata ‘
A A B T (3.3¢)

The athermal part of the flow stress, 7,”', depends on the stress field produced by
all existing dislocations, as well as other defects. It can be shown that this stress is
linear in the square root of the dislocation density, see, e.g., Hull and Bacon (1984),
and. hence, may be approximated by

o =T ) (3.9)
where
48 48 !
,},m — Z Kump(/f) ~ Z KumJ‘ ”‘(/i)(i)‘ di’ (3]0)
B0 =0 O
where p” is the dislocation density associated with the Sth slip system and is approxi-

mated by using the corresponding accumulated plastic slip, and K** are coeficients
which depend on the slip system. These coefficients may be computed following Stroh
(1953a) and Zarka (1968), based on the density and distribution of dislocations on
cach slip plane. Here, we assume all K*™s are the same and absorb the common
value into the parameter t{”, in order to simplify the calculation. Indeed, we shall fix
the values of 7, G§, p, and ¢ at the outset, using the values suggested by Nemat-
Nasser and Isaacs (1996) for their continuum model, and leave only §" = 1,.
T4 = T.0. and T =1, as our three free constitutive parameters, to be evaluated
cempirically.

It should be emphasized in connection with (3.9) and (3.10) that the density of the
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existing dislocations is not necessarily proportional to the accumulated total slip.
Nevertheless, this approximation appears adequate for the present application.

In general, a portion of the plastic work is transformed into heat, resulting in an
increase in the temperature of the sample. The increment of the plastic work is given
by

L
e

48 [
Aw’ =) j o dy. (.11
LJo

If we assume that the increment of temperature is proportional to the increment of
the plastic work, then the temperature, 7, is given by

48 /
T="T,+n )Y [ @9 dg, (3.12)
P

Jo

where 7 is a dimensional proportionality factor.
The inverse of (3.3c) is given by

(=) _ o (’\.‘(1] () ~ (%) l {{I’l |?‘1)] S R 3 13'
t - bgn ! ) Ta +1 T G(()a(b n .;,lx) (*- ~d)

for T< T™, and

o = sgn(;*)y (3.13b)

for T'> T, where T is the temperature at which the dislocation can overcome its
short-range barrier without the assistance of the applied stress field. It is given by

T = G Tk InG2 /177)). (3.14)

4. COMPUTATIONAL ALGORITHM

The incremental equations of the rate-dependent elastoplastic deformations of
crystals, in general, are very stiff. Because of this stiffness. most conventional implicit
or explicit time-integration schemes would require very small timesteps in order to
ensure both accuracy and solution stability. Hence, excessive computational time is
necessary to obtain reasonable solutions by these methods. In a recent work, Nemat-
Nasser and Okinaka (1996) have proposed a computational method for fee crystals,
which is both efficient and accurate. It is based on the plastic-predictor, elastic-
corrector method combined with the conventional forward-gradient technique. The
resulting algorithm is remarkably efficient and accurate.

In the present work, a similar computational strategy is applied to solve finite-
deformation problems of bce single crystals. The solution is obtained incrementally,
starting with the tentative assumption that the total deformation increment is solely
due to plastic slip, and then correcting the results by including the accompanying
elastic contribution. Since, in general, the elastic contribution is much smaller than
the plastic one, the method efliciently yields accurate results. On the other hand,
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during the initial deformation, or when there is a sudden change in the loading
condition, the elastic contribution may become equally important. In such situations,
the explicit Euler method is employed. In what follows, this computational method
is outlined, specifically for bce crystals which may have 48 potentially active slip
systems.

As the starting point, consider the inner product of the total deformation rate, D
(2.7a), with the symmetric part of the rotated slip-system tensor, p, to obtain

D:p* = _jl;fm*' % 5B b, (4.1a)
f=1
where
H = pt: p 4.2)
and
% = 2uD*: ¥ p*, (4.3)

where 2u % is the elasticity tensor, and p is a shear modulus used here to render the
tensor . dimensionless ; in application to tantalum, an elastically isotropic material
will be assumed in the next section.

Given a constant D over a time increment A¢, (4.1a) is to be integrated to obtain
the increments At'’s and Ay“”s. To this end, two different computational strategies
are used, depending on the deformation state of the material. In a continuous plastic
slip of, say, the «th slip system, the corresponding elastic distortion rate would be
infinitesimally small. Then, t* ~ 0. This is called the stable condition. It is assumed
to hold provisionally for all active slip systems. The ath slip system is provisionally
called active if its resolved shear stress satisfies [t*'| = /. Otherwise, it is called non-
active. When the number of active slip systems, &, is greater than five, then the plastic-
predictor technique is applied. Otherwise, the explicit Euler method is used.

In the plastic-predictor technique, first, it is assumed that t*’ = 0 in all active slip
systems, while 7 = 0 in all non-active slip systems. In view of this assumption, (4.1a)
becomes

N

D:p(a) — Z);LIX)H(/M)’ (4]b)
B

where the subscript 4 stands for the approximate value, and the summation is
performed only on active slip systems.

To calculate the 75’s, observe that only five of the symmetric slip-system tensors,
p*”’s, are linearly independent, as discussed in Section 2.2. Hence, H is singular when
more than five slip systems are active. In such a case, this system of linear equations
is supplemented by equations which represent the interdependency of the resolved

shear stresses. In view of (3.7), (2.8a~¢) are expressed as

g g g, (4.42)
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@ ) i — g (4.4b)

and
T 7O 00 — g (4.4¢)

Similarly, the 40 conditions that are given in Appendix B, are also rewritten in terms
of T, leading to a total of 43 conditions for t*”s. Since the calculation is incremental,
the number and combination of active slip systems are known at the start of each
increment. Hence, the 43 conditions can be screened and reduced to include only the
active slip systems. The reduced N—35 conditions are then collectively written in
matrix form, as

N
Y M, =0, (4.5)

where 1 < i< N—S5. These equations must now be solved together with (4.1b) to
obtain the first estimate of the slip rates. To this end, the resolved shear stresses at
the end of the time increment must be expressed in terms of the slip rates, 7s, as
discussed below.

First, we calculate the shear-stress increments, A7, from (3.13a), using a Taylor
expansion and a linearization. For small increments of the resolved shear stresses,

A7®, we thus obtain

. . T y
At® = sgn(3™) [Ar},” +B® (y‘““) A7® +1n |,¥(z)l AT)], (4.6)
where
- 1 % - 1-
B = X (1= X )5, 4.7)
0
and

. kT/‘G(a)) In ’qa(r) /?r(z)) Ts T{(“’
{ ( 0 (/ |/ (4.8)

1 T>T9,
In a deformation stage where more than five slip systems are active, the contribution
of the elastic lattice strain is small, as has been pointed out before. The slip rates are

then expected not to vary much within the time increment. Hence, the accumulated
total plastic strain may be estimated as

7a = (1) + ) 17 (1)1 A, (4.9)
and an estimate for the athermal components of the resolved shear stress can be
obtained as follows (note, K™ = 1 is used)

T =1y + v (4.10)

While it is possible to improve the estimate (4.9), the improvement for strain
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increments of a few percent would have minimal influence on the final results. For
this and related reasons, the above estimate will be used.
We now calculate the approximate values of Ay, Ay, At,, and AT, as follows:

Ayy =Y sgn(G%(1,) G5+ 7 (10))A1/2, 4.11)
Ayq =79 =77 (1), 4.12)
o o T~
Afz(uij == _....__’42_“__9_ A/47 (413)
and
AT =Y 1 (1,) (G5 +77 (1)) AL)2, (4.14)

x*

where again a subscript A4 describes the corresponding approximate value.
Substitution of (4.9)--(4.14) into (4.6) yields

AT@ = Z P(atf)}-,hlf) +q(a)’ (4.15)
B

where

(%)
A

P T At T
PO = sgn(3™ (1)) [5(“”)321).(1,"‘" 4 sen(3" (1)) - -+
7)) 4 Va4

B

RBY T (1) In(17 (1)) ;"”)} (4.16)

(aJ
To

q<“>=sgn(~;<-”(to)){ BTt Z[sg"( REEwE

A

By W(ro)1n<|,'*>(zo)u,»<“>>] iy )} (4.17)

go - LK 259 7(1—)( @yt 4.18)
=G r s 4.

and
X,y =min { —(kT/G&F) In(|3 /3, 1}. (4.19)
Here { P*P} is an N x N matrix.
Since At™’s satisfy the interdependency relations for the resolved shear stresses,

substitute (4.15) into (4.5) to obtain the following N — 5 equations for approximate
slip rates 3¢ :
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N

N /
> M, (Z POPP+ q(“)) -0, (4.20)
x i

forl <i< N-5.

Expression (4.20) together with (4.1b) constitute N linear equations for N
unknowns, which are then solved to obtain the approximate slip rates 7¢’s. The
obtained approximate slip rates are in general sufficiently accurate, although small
errors due to the neglected contribution of the elastic strain are still involved, which
can be corrected in the same manner as discussed by Nemat-Nasser and Okinaka
(1996). Using these approximate slip rates in (4.11), the plastic strain is now updated

by
74 = () + Ay, (4.21)

the athermal components of the resolved shear stresses are calculated from (4.10),
and the shear stresses are then obtained from (3.13a). In order to find the updated
Cauchy stress by using the approximate resolved shear stresses, 75, and relation
(3.7), choose five independent slip system tensors, p, and solve the system of linear
equations corresponding to (3.7) for the stress components. Furthermore, as suggested
by Nemat-Nasser and Okinaka (1996), the increment of the rigid-body rotation is
obtained by solving for * from (2.7b) and then applying the Cayley-Hamilton
theorem.

The accuracy and efficiency of the proposed algorithm can be demonstrated through
various numerical examples. The results of the calculation using the proposed algo-
rithm are compared with those obtained by directly using the explicit Euler method
with a suitably large number of timesteps. In these examples, when the new algorithm
is employed, different (much greater) time increments are used. The time increment
is adjusted to allow a 5% increment of the equivalent strain in the plastic-predictor
method. while a 0.01% increment of the equivalent strain is used for the explicit Euler
method. The constitutive constants are: u=280 GPa, p=(2/3), ¢=2,
P =546 x 10%/s, kG, =8.62x10 */K, n=10.5 7.2 =75 MPa, t{' = 65 MPa,
% = 440 MPa, T, = 300 K, and = 0. Except for y, these are the values used for
the polycrystal calculation in the next section.

As our first illustration, consider a constant velocity gradient given by

1000 0 0
L=| 0 1000 0 (s Y. (4.22)
0 0 —2000

The calculated equivalent stress is plotted in Fig. 1. In the figure, circles represent the
calculated results of the proposed algorithm and the solid line is given by the explicit
Euler method, with 5000 steps. In the proposed algorithm, the explicit Euler method
with small time increments is applied until y., = 0.19%, when the stable condition is
satisfied, and then, the plastic-predictor method is applied until y., = 50.0%. The
values of the equivalent stress obtained by the proposed algorithm and by the explicit
Euler method show good agreement. The CPU time required in the proposed algo-
rithm is 1.0% of that of the explicit Euler method on a SPARC SUN workstation.
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Fig. 1. Calculation results of Example 1. Circles are given by the proposed algorithm, and the solid line is
given by the explicit Euler method with 5000 timesteps.

As our second example, consider

0 2000 O
L=]2000 0 O|¢s™"). (4.23)
0 0 0

The calculated equivalent stress is plotted in Fig. 2. Again, circles are given by the
proposed algorithm, and the solid line is given by the explicit Euler method with 5000
steps. In the proposed algorithm, the explicit Euler method is applied until the stable
condition is satisfied at y,, = 0.34%, and then the plastic-predictor method is applied.
The CPU time required for the proposed algorithm is 1.25% of the one used in the
reference calculation.

As a final example, assume

0 2000 0
L=2000 0 1000 (s~ ). (4.24)
0 1000 0O
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Fig. 2. Calculation results of Example 2. Circles are given by the proposed algorithm, and the solid line is
given by the explicit Euler method with 5000 timesteps.

The calculated equivalent stress is plotted in Fig. 3. In this example, the explicit Euler
method is applied until the stable condition is satisfied at y., = 0.99%, and then the
plastic-predictor method is applied. The values of the equivalent stress show good
agreement with the results of the reference calculation, while the CPU time required
for the proposed algorithm is 3.1% of that for the reference calculation. In this
example, the stable condition is satisfied relatively late in the deformation history.
Nevertheless, the proposed algorithm shows significant efficiency.

5. APPLICATION TO POLYCRYSTALLINE TANTALUM

In this section, the constitutive method and computational algorithm proposed in
Sections 3 and 4 are applied to study the finite deformation of polycrystalline tantalum
with various initial temperatures, deformed at various strain rates. Computational
results are compared with the experimental data reported by Nemat-Nasser and Issacs
(1996), and Chen et al. (1996).
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Fig. 3. Calculation results of Example 3. Circles are given by the proposed algorithm. and the solid line is
given by the explicit Euler method with 5000 timesteps.

5.1.  Polycrystal calculations

In the numerical calculation for the polycrystalline tantalum, the Taylor averaging
model is employed. This assumes that each grain of the polycrystal undergoes the
same deformation and deformation rate. Hence, in all grains, L = L, where L and L
denote the local and overall velocity gradients, respectively. The global temperature
of the material element is also assumed to have a common value which must be
calculated at a suitable time increment,

In the proposed new algorithm, there are two different time increment scales,
depending on the deformation stage of the material. The time increments are thus, in
general, not uniform for all grains. Hence, an averaging time interval must be assigned,
at the end of which the equivalent plastic strain rate and the equivalent stress of the
polycrystal are obtained by averaging, and the overall temperature is calculated, as
explained below.

The volume average of the Cauchy stress is given by

“_..}_. dV_"1 AZ"“ (5.1:
= % L»a- = Y; ag,, 2. d)
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where M is the number of grains and all grains are assumed to have the same volume.
An initially uniform distribution of the crystal orientations is assumed for illustration.
The equivalent stress is then calculated as

T, =032E:%)" ", (5.1b)
where the subscript eq represents the equivalent value. The plastic part of the strain
rate for the nth grain of the polycrystal is given by

48
D/ =Y 7p, (52)

where n = |...., M are the grain indices.
The volume average of the plastic strain rate and the equivalent plastic strain rate
are defined by

— | M
D’ = v Z D/, (5.3a)
e
and
Teg =(2/3D7: D7) 2, (5.3b)

respectively, where again the subscript eq represents the equivalent value, and the
superscript p indicates the value corresponding to the plastic deformation. The
approximate temperature of the polycrystal material element (the test sample) is then
calculated from

T,=T,+nWrArs (5.4a)
where W7 is the plastic work rate per unit volume, which can be approximated by

Wrx s, s (5.4b)

\ .'cq -

and » includes the fraction of the plastic work converted into heat, as well as the
conversion factor.

The above calculations are performed at the end of each averaging time interval.
Note that the temperature increment here is calculated in a different way than that
for the single crystal discussed in Section 4. For a single crystal, the total increment
of the plastic work is given exactly by (3.11). If a fully compatible averaging method
which satisfies the equilibrium conditions, is used to obtain the polycrystal stress
and deformation measures. then the corresponding increment of the plastic work is
obtained by the sum of the plastic work (per unit volume) in each contributing
crystal. This would then be the average plastic work associated with the continuum
polycrystalline material element. The Taylor averaging method, however, does not
satisfy the equilibrium conditions. Therefore, to estimate the temperature of an
aggregate based on the Taylor averaging method, it is better to use (5.4). since an
estimate based on (3.11) and (3.12). in general, would overestimate the rate of plastic
work and, hence, the tempcrature change.
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5.2.  Comparison with experimental results

Extensive experimental data on commercially pure tantalum have been reported
recently by Nemat-Nasser and Isaacs (1996), and Chen et al. (1996). These exper-
iments cover the flow stress in uniaxial compression, over a broad range of strain
rates (1074 x 10%/s) and temperatures (77-1300 K), with strains exceeding 100%.
Nemat-Nasser and Isaacs (1996) report both quasi-adiabatic and quasi-isothermal
flow stresses, using a novel technique which allows loading a sample with a single
stress pulse of pre-defined profile, at a desired temperature, and then recovering the
sample without it having been subjected to any other loading. The quasi-isothermal
flow stress is constructed by incremental loading of the sample, allowing-—after each
increment-—the sample to regain its initial temperature, before the application of the
next load increment as a prescribed strain rate. The high-strain-rate, quasi-adiabatic
tests are performed by just simply loading the sample at a given strain rate and an
initial temperature, in a Hopkinson bar.

In general, a portion of the heat generated in the sample by plastic deformation is
lost through conduction into the Hopkinson bars which are brought into contact with
the sample while they are at room temperature, and the sample in the furnace is at a
higher temperature. Calculations, however, show that this heat loss is negligibly small.

In addition, a small percentage of the stress-work is usually stored in the sample as
the elastic energy of the dislocations and defects that are generated during plastic
deformation ; see Stroh (1953b). This, however, is quickly saturated, and, after 10-
20% strain, essentially all the plastic work is converted into heating the sample ; see,
Nemat-Nasser and Isaacs (1996) for experimental documentation, and Stroh (1953b)
for analytical estimates. Indeed, Stroh (1953b) shows that less than 5% of the plastic
work can possibly be stored in the sample, and Nemat-Nasser and Isaacs (1996) verify
experimentally that almost all of the work has to be used to increase the temperature
of the sample in high-strain-rate experiments.

In what follows, we have assumed that 95% of the plastic work is used to increase
the temperature of the sample. the rest being partly lost or stored in the sample as the
elastic energy of dislocations and defects. This corresponds to # x 0.411, assuming a
constant heat capacity.

In our simulations, we fix the values of all constitutive parameters and consider
only the stress 7, t§”. and . as the adjustable parameters which may depend on
the specific material. For simplicity, the values of all parameters are taken to be the
same for all slip systems, and are set equal to those estimated by Nemat-Nasser and
Isaacs (1996) in their continuum model. These are: G{” =1 eV which gives
kiGE = 8.62x 1077 /K, 7 = 546 x 10" /s, p = 2/3 and ¢ = 2; note that these values
of p and g are suggested by Ono (1968) to be appropriate for modeling many barrier
profiles.

Figure 4 shows the experimentally obtained flow stress at a 5000;s strain rate and
initial temperatures of 300, 400, 500, 600, 800, and 1000 K. The strains exceed 60%.
With % = 440 MPa, t§* = 65 MPa. and 7! = 75 MPa, and using the Taylor aver-
aging method with n = 0.433, the model calculations nicely simulate these exper-
imental results.

In Fig. 5, the model results are compared with the experimental results obtained at
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Fig. 4. Comparison between the experimental data and the model calculation for polycrystalline tantalum

at 5000/s strain rate and initial temperatures of 300, 400, 500, 600, 800, and 1000 K. Dotted curves represent

the experimental data, and solid curves are given by the model calculation, using the proposed algorithm
and the Taylor averaging method.

an initial room temperature, and strain rates of 10%, 1.8 x 10*, and 4 x 10%/s, with
strains exceeding 100%. The comparison between the model calculation and exper-
imental data for isothermal flow stress is shown in Fig. 6, at a temperature of 298 K
and strain rate of 5100/s. No change is made in the constitutive parameters, since the
tests were performed on essentially the same material.

We have also compared the model predictions with some of the experimental results
reported by Chen et al. (1966) on different tantalums, at various temperatures and
strain rates, but limited total strains. The comparison is shown in Fig. 7. All consti-
tutive parameters are kept at the same values as before except the adjustable par-
ameters which are chosen as t” = 480 MPa, 1" = 140 MPa, and 1'% = 40 MPa. The
Taylor averaging method with n = 0.433, is used.

To obtain the overall strain rates used in the compression tests, all the above-
mentioned model calculations are based on the following imposed constant overall
velocity gradient, where 7., is set equal to the imposed uniaxial strain rate, in the
compression Hopkinson bar or in the quasi-static testing machine :
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Fig. 6. Comparison between the experimental data and the model calculation for isothermal flow stress at

5100/s strain rate and an initial temperature of 298 K. Dotted curves represent the experimental data, and

the solid curve is obtained by the model calculation, using the proposed algorithm and the Taylor averaging
method.

and temperature-dependent, and an athermal part which is due to the stress field of
all farfield dislocations and defects. Constitutive models are proposed for each part,
based on the underlying physics of the process.

Then, a new algorithm is proposed to solve incrementally the finite-deformation
problem of bcc single crystals. It is assumed that the total deformation increment is
due only to the plastic slip, when the elastic contributions are small and more than
five slip systems are active, but they are included, and the explicit Euler method is
employed when the elastic strains are comparable to the plastic ones. The proposed
algorithm combines these two different computational strategies. The accuracy and
efficiency of the algorithm are examined through comparison of the results with those
obtained by the explicit Euler method using a very small timestep. It is concluded
that the proposed algorithm for the finite deformation of bec single crystals has good
accuracy, and is considerably more efficient than the conventional time-integration
schemes.

Finally, the proposed constitutive model and the computational algorithm are
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Fig. 7. Comparison between the experimental data reported by Chen e al. (1996) and the model calculation
on different tantalums at various initial temperatures and strain rates. Symbols are given by the model
calculation, solid curves are experimental data.

applied to simulate the response of commercially pure polycrystalline tantalum over
a broad range of strain rates, temperatures, and strains. A Taylor-type averaging
scheme is used, and excellent correlation with experimental results is obtained using
only a few free constitutive parameters.
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APPENDIX A

Al.  Decomposition of deformation and its rate

Consider a finitely deformed crystal with initial particle positions denoted by X and the
current ones by x. The deformation gradient, F = (0x/0X)”, is decomposed as

F = F*F’ = V'R*F”, (A1)
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In general, neither F* nor F” may be compatible, i.e., they may not be gradients of some
smooth displacement fields. Their product, F, is compatible. Figure Al shows the initial, C,
the final C, and two intermediate configurations, Cr» and Cy, of the crystal, as well as the
associated deformation gradients. Here, F” denotes the deformation gradient corresponding to
the plastic flow of matter through the lattice by slip-induced simple shearing, whereas V¢ is the
pure elastic deformation and R* is the rigid rotation of the lattice.

Note that the advantage of decomposition (A1) is that the elastic deformation is implemented
last, after the plastic flow of the matter through the lattice, which does not change the lattice.
and the rigid-body rotation of the lattice, which also leaves the lattice undistorted ; see Fig. Al.
Since, in general, crystal elasticity is anisotropic, depending on the lattice structure, in the
present formulation, the elastic constitutive relations are expressed with respect to the lattice
coordinates and then transformed into the spatially fixed coordinate system ; see comments in
Section A3. .

The velocity gradient, L = FF ', is decomposed as

L =L*+L" =(D*+W*)+ (D" +W"), (A2a)
D* = D"+%(V"S!*V’ Ve 1Q*VY), (A2b)
W* = W+ %(V"Q*V" PEVETQRVY), (A2c)

where L” = FXL7F* ' L/ = F’F’ ' L° = V°V" ' and Q* = R*R*". The velocity gradient L”
measures the rate of plastic distortion with reference to the current configuration., whereas L”
is with respect to the elastically relaxed configuration, C,., in which the lattice is still in its
initial unrotated orientation. For most metals, the elastic lattice distortion is generally very
small. For this, set V' = 1+¢ V= & and to the first order in & and &, obtain

L* = g +e0* -~ Q¥+ Q*, (A3a)
D* = g 4+80% - Q*g, (A3b)
ng
Co Y —
/ \
{ 5!
{ T
L ]
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F
ng*
X
Cpr L

Fig. Al. Decomposition of deformation gradient F into plastic deformation F, lattice rotation R*. and
lattice distortion (elastic deformation) V*.
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W* = Q*, (Aldc)

A2, Plastic distortion

Denote the slip direction and slip normal of a typical slip system in the undeformed con-
figuration, by si® and n{"'. respectively. As stated before, plastic deformation leaves the lattice
structure unaffected. Hence, the slip direction and slip normal in the intermediate configuration,
C,», are the same as those in the initial undeformed configuration, C,. The plastic part of the
velocity gradient due to crystallographic slip may be expressed by

n

0= DW= § s @ng, (Ada)
w0
D= Y spp, (Adb)
ao
W= 3w (Adc)

FER

where ' is the slip rate of the «th slip system, measured relative to the undeformed lattice, n
is the total number of active slip systems in the single crystal, pf” =(s§” @ n§’ +n{" & s§”)/2.
and wi = (s @ ni® —n$ @ s$”)/2. When measured relative to the current configuration,
these expressions become

L’ = D/ + W"
— i u) (%) ®n(:| _ Z {xh (y)+ Z (1}w(11 (AS)
2
s = s (A6)
n” =F* ‘n", (A7)

where p*' = (s @ n 4+ 0™ ® s)/2. and W' = (s ® n"”’ —n"™' ® §*)/2.

A3, Crystal elasticity

The elastic distortion of the lattice may be measured by the left-stretch tensor. V°_ relative
10 configuration Cy. in which the undistorted lattice is rotated by R* from its initial orientation.
The strain measure can be arbitrary. A possible choice is the Lagrangian (elastic) strain
E‘ = (V> —1);2 with an associated stress SP. relating through the elastic potential. ¢. by

S =V V' ! = ¢iCE". (A8)

where 7 is the Kirchhoff stress. The corresponding elasticity tensor, 2u.%, measured relative to
C, then becomes

2uP = PR PR, (A9)

where 2 is a typical shear modulus. used to render % dimensionless.

Note that the stress tensor SP is measured relative to the rotated lattice, and hence its rate is
not objective. Its advantage, however, is that it is directly related to an undistorted lattice. It is
possible to use the alternative decomposition of F*, i.e., F* = R*U*, and define the elasticity
in the unrotated but plastically deformed configuration C» of Fig. Al. This, however, intro-
duces the elastic lattice distortion in a stage which complicates the interpretation of slip, slip
rate, and their relation to the resolved shear stress which then must be expressed in the distorted
lattice. Other alternative representations are possible. e.g.. with respect to the undeformed






