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A B C + B C A + C A B + C B A + A C B + B A C

= {tr(A) tr(B) tr(C) − tr(A) tr(B C) − tr(B) tr(C A) − tr(C) tr(A B)

+ tr(A B C) + tr(A C B)} 1111

− {tr(B) tr(C) − tr(B C)} A − {tr(C) tr(A) − tr(C A)} B

− {tr(A) tr(B) − tr(A B)} C

+ tr(A) (B C + C B) + tr(B) (C A + A C) + tr(C) (A B + B A) . (1.4.2)

Substitution of B = C = A into (1.4.2) yields the Hamilton-Cayley theorem,
(1.2.11). In this theorem, tensor A need not be symmetric.

Substituting C = A into (1.4.2), obtain another identity relating two
second-order arbitrary tensors A and B,

A (A B + B A) + (A B + B A) A − IA (A B + B A) + IIA B − A B A

= tr(B) A2 + {tr(A B) − IA tr(B)} A

+ {tr(A2 B) − IA tr(A B) + IIA tr(B)} 1111 . (1.4.3)

Replace B in (1.4.3) by A B + B A, and use the Hamilton-Cayley theorem to
arrive at another identity,

A (A B + B A) A + IIIA B − IA A B A

= tr(A B) A2 + {tr(A2 B) − IA tr(A B)} A + IIIA tr(B) 1111 . (1.4.4)

Similarly, replace B in (1.4.3) by A B A to obtain

A2 B A2 + IIIA (A B + B A) − IIA A B A

= tr(A2 B) A2 + {IIIA tr(B) − IIA tr(A B)} A + IIIA tr(A B) 1111 . (1.4.5)

Identities (1.4.2) to (1.4.5) are referred to as Rivlin’s identities.

1.4.2. Other Related Identities

Eliminate the term A B A from (1.4.3) and (1.4.4) to arrive at

(IA IIA − IIIA) B = A (A B + B A) A + IA
2 (A B + B A)

− IA {A (A B + B A) + (A B + B A) A} + {IA tr(B) − tr(A B)} A2

− {IA
2 tr(B) − 2 IA tr(A B) + tr(A2 B)} A

+ IIIA {IA tr(A−1 B) − tr(B)} 1111 . (1.4.6)

Following Scheidler (1994), express identity (1.4.6) as

IIIÃ B = Ã (A B + B A) Ã + tr(Ã B) A2 − tr(Ã2 B) A

+ IIIA tr(A−1 Ã B) 1111 , (1.4.7a)

with
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1.5 ISOTROPIC TENSOR-VALUED FUNCTIONS 35

obtain a coordinate-independent expression for the material time derivative of
the logarithmic strain. Scheidler (1991a) provides an alternative proof for Hill’s
(1978) formula when the principal stretches are repeated. Scheidler (1991b)
then gives approximate coordinate-independent formulae for the time deriva-
tives of the generalized strain tensors.

Thus, the isotropic tensor-valued functions of symmetric second-order
tensors and their time derivatives, have received considerable attention in the
kinematics of finite deformation. Those of nonsymmetric tensors seem to have
been addressed only recently. In this section, exact explicit coordinate-
independent expressions are given for a class of isotropic tensor-valued func-
tions of nonsymmetric second-order tensors, following Balendran and Nemat-
Nasser (1996).

1.5.1. A Class of Isotropic Tensor-valued Functions of Real-valued
Second-order Tensors

Let f(x) be a suitably differentiable function, admitting a uniformly con-
vergent Taylor series expansion. Then, to any desired degree of accuracy, f(x)
can be represented by

f(x) =
m = 0
Σ
n

αm xm , (1.5.1a)

where αi’s are constants, and n is a suitable large integer. Consider a class of
tensor-valued functions f(A) that can be expressed as follows:

f(A) =
m = 0
Σ
n

αm Am . (1.5.1b)

This tensor-valued function is isotropic. Hence,

f(RT A R) = RT f(A) R ,

for any proper orthogonal (rotation) tensor R. At focus here is the class (1.5.1b)
of isotropic tensor-valued functions of any real-valued second-order tensor with
distinct, repeated, or complex-valued eigenvalues.

Substituting the coordinate-independent expressions for Am, m = 1, 2,
..., n, from (1.3.17d), (1.3.22d), and (1.3.25a) into (1.5.1b), obtain

f(A) = f(A
� �

) + f′(λ) L +
2
1� � f′′(λ) L2 , (1.5.2a)

where

f(A
� �

) =
m = 0
Σ
n

αm A
� �

m , A
� �

= A − L , (1.5.2b,c)

L = 0000 , for λ1 ≠ λ2 ≠ λ3 ≠ λ1 ,
�����������������������������������

11 See Subsection 2.10.2, page 84.
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4.8 RATE-DEPENDENT THEORIES 229

τ = τa + τ* + τd , τd = m0 [1 − exp( − α γ. )], (4.8.21a,b)

where m0 is a constant, and, in the range of the considered strain rates,
α = O(10−4)s. In this case, expansion of the exponential term in Taylor series
gives,

τd
∼∼ m0 α γ. , (4.8.21c)

so that, in view of (4.8.20d,e), it follows that81

α ∼∼
m0 b2 ρm

D
� ������������� . (4.8.21d)

4.8.9. Application: Flow Stress of Commercially Pure Tantalum

Consider as illustration, applying the physically-based model (4.8.11)
with τa defined by (4.8.18b) to tantalum (Ta) which is a bcc metal. To simplify
the analysis, neglect the influence of the grain size, and use, for the athermal
part of the flow stress,

τa = c0 + c1 γ n1 , (4.8.18e)

where c0 and c1 are to be fixed empirically.

For bcc metals, the lattice itself provides the short-range barrier (the
Peierls barrier) to the motion of dislocations. Generally, a double kink is
formed with the assistance of thermal vibrations, and the kinks then move side-
ways, leading to the advancement of the dislocation line. In this process, the
kinks may be pinned down by other defects or alloying elements, thereby
increasing the resistance to the plastic deformation. For tantalum-tungsten (Ta-
W) alloys, the (substitutional) tungsten atoms may pin down the kinked disloca-
tions in their lateral motion. Hence, the flow stress for Ta-W is generally higher
than that for commercially pure tantalum (Nemat-Nasser and Kapoor, 2001). In
what follows, the thermally activated part of the flow stress is assumed to
correspond solely to the Peierls resistance to the dislocation motion. The results,
therefore, are applicable to, for example, commercially pure tantalum, molybde-
num, niobium, and vanadium; see Table 4.8.1, page 235, for the values of their
constitutive parameters.

Modified Hopkinson experimental techniques have been used to measure
the flow stress of ductile materials over a broad range of strains, strain rates, and
temperatures, in uniaxial stress.82 Figure 4.8.3 gives the adiabatic flow stress of
commercially pure tantalum tested in compression at a 5,000/s strain rate and at
�����������������������������������

81 If m0 is identified with the material’s yield stress at a suitably high temperature, say, about
1,000K, and the Taylor factor M is also introduced, then equation (4.8.21d) corresponds to equation
(3.6)2 of Nemat-Nasser et al. (2001a).

82 Nemat-Nasser et al. (1991), Nemat-Nasser and Isaacs (1997a,b), Nemat-Nasser (2000b), and
ASM Volume 8 (2000).

brannon
Rectangle



4.8 RATE-DEPENDENT THEORIES 235

rates. The constitutive parameters of several refractory metals that have been
experimentally characterized, are listed in Table 4.8.1.

Finally, note that, in (4.8.22e), the thermal component of the flow stress is
non-negative, and should be set equal to zero when the temperature exceeds a
corresponding critical value which is strain-rate dependent, and which is given
by

Tc =
�� �

G0

k����� ln
γ.
γ. r� ���

� �
� −1

. (4.8.22f)

For γ. = 10−3, 10−1, 1,000, 5,000, and 40,000/s, this gives, Tc = 430, 520, 880,
1,000, and 1,220K, respectively.

Table 4.8.1

Values of constitutive parameters in (4.8.22e) for indicated commercially pure
metalsa

	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
p q k/G0 γ. r τ̂ c1 n1

10−5K 107 MPa MPa	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
Ta 2/3 2 8.62 54.6 1,100 473 1/5	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
Va 2/3 2 17.2 0.357 1,050 305 1/5	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
Nb 2/3 2 12.4 0.35 1,680 440 1/4	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
Mo 2/3 2 8.62 1.45 2,450 720 1/4

	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	��
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a It is assumed that c0
∼∼ 0 in all cases.

Application to Molybdenum: As pointed out before, the model predicts experi-
mental results obtained for commercially pure molybdenum, as reported by
Nemat-Nasser et al. (1999b). The corresponding parameters are given in Table
4.8.1. Figure 4.8.9 shows some of the results obtained by these authors for a
3,100/s strain rate and indicated initial temperatures. For the model calculation,
it is assumed that the entire plastic work is used to heat the sample. The sample
temperature is estimated using (4.8.22d), with (ρ̂ Cv)−1 ∼∼ 0.39K/MPa. Figure
4.8.10 compares the experimental results for an 8,000/s strain rate and indicated
initial temperatures, with the corresponding model predictions.

4.8.10. Application to OFHC Copper

Consider applying the model of (4.8.5a) with the thermally activated part
of the flow stress given by (4.8.15a) and the athermal part defined by (4.8.18d),
to predict the response of OFHC copper deformed in compression at various
strain rates and temperatures. To simplify the modeling, neglect the grain-size
effect, use the approximation (4.8.12p,q) with n0 = 1/2, q = 2, and p = 2/3, and
consider the following semi-empirical form of the basic equations:
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4.9 GENERAL ANISOTROPIC ELASTOPLASTICITY 267

γ. =
H
1���

∂ττττ
∂f��� : ττ� ′ , (4.9.39b)

where the workhardening parameter H is defined by

H = − �
�
� ∂γ
∂f��� +

∂ββββ
∂f��� �

dγ
dββββ��� �

�
�
. (4.9.39c)

Given D and W, (4.9.38a) must be integrated together with the evolution
equations (4.9.3), to obtain the stress increment and the increments in the inter-
nal variables ββββ, over a suitable time interval, as discussed in Chapter 5. For this,
it is necessary to calculate LeΩ = Le + ΩΩ, in order to obtain an expression for the
objective stress rate ττ∇ eΩ, (4.9.31d). In principle, this is always possible,
although the presence of the elastic deformation, i.e., the term Ve, in the
kinematical equations complicates the details. The elastic strains are, however,
usually very small. If this fact is used, then the expressions simplify consider-
ably, as is discussed in the sequel, after the general case is outlined.

Without regard for the smallness of the elastic strains, based on (4.9.7a-d)
note that Wp is given as a homogeneous and linear function of Dp. Indeed, from
D

p +W

p = Ve−1 (Dp +Wp) Ve and the relation between W

p and D

p, i.e.,
(4.9.21a), obtain

{Ve−1 (Dp +Wp) Ve}skew = KKK (U

p) : {Ve−1 (Dp +Wp) Ve}sym , (4.9.40)

where the subscripts skew and sym denote the skewsymmetric and the sym-
metric parts of the corresponding expression. Since Dp is defined by the consti-
tutive relation (4.9.2), expression (4.9.40) gives Wp as a linear function of
γ. ∂g/∂ττττ. Once Wp is defined in this manner, WeΩ = W −Wp and hence,
LeΩ = WeΩ + (D −Dp), are expressed as linear functions of γ. ∂g/∂ττττ. With these
expressions, the left-hand side of (4.9.38a) is defined in terms of ττ� , ττττ, and
γ. ∂g/∂ττττ. The resulting differential equation can hence be integrated numeri-
cally to obtain the stress increment.

4.9.8. Small Elastic Deformations

To make the above results transparent, examine the consequences of the
fact that the elastic strains are usually very small, say, less than 1% for most
metals. Set

Ve = 1111 + εεεε , Ve−1 = 1111 − εεεε +O(εεεε2) , (4.9.41a,b)

where O(εεεε2) denotes terms of the order of εεεε2 and greater. Note that, if | εεεε | is of
the order of 0.01, then | εεεε2 | would be of the order of 0.0001. The plastic strains
and rigid-body rotations of material elements, on the other hand, are usually
rather large. From L

 = Ve−1 Lp Ve and (4.9.41a,b), it follows that

W

p = Wp − εεεεDp +Dp εεεε +O(εεεε2) ,

D

p = Dp − εεεεWp +Wp εεεε +O(εεεε2) . (4.9.42a,b)
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5.2 INCREMENTAL KINEMATICS 295

Rt = Ft Ut
−1 . (5.2.25a-l)

Note that, the evaluation of the tensors Ct and Ct
2 and the coefficients k, a, and

b, requires 88 floating point operations. With an additional 14 floating point
operations, and 1, 3, and 4, evaluations of arc cosine, cosine, and square root,
respectively, the principal stretches can be obtained. Then the invariants of the
stretch tensor Ut require 9 more floating point operations. Evaluation of Ut

−1

and Rt requires 21 and 45 floating point operations, respectively. In total, 186
floating point operations, and 1, 3, and 4 evaluations of arc cosine, cosine, and
square root, respectively, are required to determine the rotation tensor exactly.
Rashid’s (1993) approximate estimate requires 105 floating point operations and
2 evaluations of square root.

Using (5.2.12), the constant corotational deformation rate is evaluated
exactly, where (5.2.27) is obtained from (1.5.14) and (1.5.15):

(i) a = 0

D̂ =
∆t

ln (λ1)� ��������� 1111 . (5.2.26)

(ii) a3 = b2 ≠ 0

D̂ =
(λ1

2 − λ2
2) ∆t

ln (λ1) − ln (λ2)� ����������������������� Ct +
(λ1

2 − λ2
2) ∆t

λ1
2 ln (λ2) − λ2

2 ln (λ1)� ��������������������������������� 1111 . (5.2.27)

(iii) a3 ≠ b2

∆ = − (λ1
2 − λ2

2) (λ2
2 − λ3

2) (λ3
2 − λ1

2) ,

����
� a2

− a1

a0

� ���
�

= ∆
1� �

����
� 1
λ2

2 + λ3
2

λ2
2 λ3

2

1
λ3

2 + λ1
2

λ3
2 λ1

2

1
λ1

2 + λ2
2

λ1
2 λ2

2
� ���
�

����
� ln (λ3) (λ1

2 − λ2
2)

ln (λ2) (λ3
2 − λ1

2)
ln (λ1) (λ2

2 − λ3
2)

� ���
�

,

D̂ =
∆t
1� ��� (a0 1111 + a1 Ct + a2 Ct

2) . (5.2.28a-c)

This requires a maximum of 32 floating point operations and 3 evaluations of
logarithm. The approximate expression in Rashid’s procedure requires an addi-
tional 52 floating point operations.

Summarizing, the exact evaluation of Rt and D̂ for a given Ft, requires
218 floating point operations and 1, 3, 4, and 3, evaluations of arc cosine,
cosine, square root, and logarithm, respectively. The approximate evaluation of
Rt and D̂ for a given Ft, requires 157 floating point operations and 2 evaluations
of square root. As shown by Rashid (1993), the approximate expressions D̂R

and Rt
R are accurate only to the second and first order of Ut − 1111, respectively.
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5.7 INTEGRATION FOR UNIDIRECTIONAL STRETCH 335

τA = F(γA) , ∆βA =
γ(t)
∫
γ

A

Λ(γ) dγ ,

HA = H(γA) , ΛA = Λ(γA) . (5.7.17a-f)

Step 5

Estimate the error in the plastic strain increment and correct,

∆γer =
µ + HA + ΛA

τA − τy(t) + ∆βA� ������������������������� , ∆γ = ∆γA − ∆γer . (5.7.18a,b)

Step 7

Obtain the final values of the equivalent plastic strain, total stress, and the back-
stress,

γ(t + ∆t) = γ(t) + ∆γ ,

ττ̂(t + ∆t) =
�� � 1 −

τtr
µ ∆γ� ������� � �� sŝ tr + ββ̂(t) ,

ββ̂(t + ∆t) = ββ̂(t) + (∆βA − ΛA ∆γer)
τtr
sŝ tr� ��� . (5.7.19a-c)

Note that, if τα ≤ τy(t), then from (5.7.12), ∆tp = 0 and sŝ tr = sŝα. Hence,
from (5.7.17a), ∆γA = 0. This yields ∆βA = 0 and τA = τy(t), and from (5.7.18a),
∆γer = 0. In this case, the final values are given by

ττ̂(t + ∆t) = sŝα + ββ̂(t) , ββ̂(t + ∆t) = ββ̂(t) . (5.7.19d,e)

Thus, the method produces exact results for elastic deformation. The time
required to reach the yield surface is not explicitly calculated. This fact renders
the generalized radial-return method very attractive for implementation in
large-scale computer codes. The generalization outlined above ensures that the
objectivity is satisfied in the presence of isotropic and kinematic hardening,
including the noncoaxiality effect. Furthermore, the use of the plastic-
predictor/elastic-corrector method, ensures that the stress magnitude is calcu-
lated almost exactly in one step.

Example: As an illustration consider an isotropic hardening with yield function

F(γ) = τc (1 + γ /γ0)
N , (5.7.20a)

where τc = µ /100, γ0 = 0.005, and N = 0.1. As an example consider the follow-
ing time history for the corotational deformation rate D̂:

D̂ =

���
�
0
0
1

0
− 1

0

0
0
0 	 ��


 × 10−2 , 0 ≤ t < 50 ,

D̂ =

���
�
0
1
1

0
− 1

1

0
0
0 	 ��


 × 10−2 , 50 ≤ t < 100 ,
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342 INTEGRATION OF CONTINUUM CONSTITUTIVE EQUATIONS

Step 2

In the absence of noncoaxiality, obtain the trial stress difference, and its magni-
tude and then correct for noncoaxiality,

sŝα = sŝ (t) + 2 µ D̂ ∆t , τα = (1⁄2 sŝα : sŝα)1⁄2 .

sŝ tr = sŝα + µ α
�

{2 D̂ − (sŝα : D̂) sŝα / (τα)2} ∆tp ,

τtr = (1⁄2 sŝ tr : sŝ tr)1⁄2 . (5.7.45a-d)

Step 3

Calculate the effective initial stress and deformation rate,

st =
√

� �

2
sŝ (t) : µµ̂tr� ������������� , ε

.
=

µ ∆t
τtr − st� ��������� , µµ̂tr =

√
� �

2 τtr

ŝtr� ������� . (5.7.46a-c)

Step 4

If ε
.

< 0, then set ∆γ = ∆β = 0 and go to Step 8.

Step 5

Calculate the initial effective estimated plastic strain rate, and the final flow
stress from the flow rule,

ε
.
t
p = sign(st) g( | st | , γ(t)) ,

τd = F(ε
.
, γ(t)) . (5.7.47a,b)

Step 6

Estimate the plastic strain increment, plastic strain rate, and the effective stress
at the end of the timestep,

k = µ τd − st

ε
.

− ε
.
t
p� ��������� ,

∆γA = ε
.

∆t −
µ

τd − st� ��������� (1 − e − k∆t) ,

γ. A = ε
.

− (ε
.

− ε
.
t
p) e − k∆t ,

τe = st + (τd − st) (1 − e − k∆t) . (5.7.48a-d)

Step 7

Estimate the flow stress, the increment in the backstress, and the hardening
moduli,

γA = γ(t) + ∆γA , τA = F(γ. A, γA) , ∆βA =
γ(t)
∫
γ

A

Λ(γ) dγ ,

ηA =
∆t
1� ���

∂γ.
∂F� ��� +

∂γ
∂F� ��� , ΛA = Λ(γA) . (5.7.49a-e)
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5.7 INTEGRATION FOR UNIDIRECTIONAL STRETCH 343

Step 8

Estimate the error in the plastic strain increment and correct the increments in
the plastic strain and the backstress,

∆γer =
µ + ΛA + ηA

τA − τe + ∆βA� ��������������������� ,

∆γ = max {0 , ∆γA − ∆γer} ,

∆β =
�� �
∆βA − ΛA ∆γer

0
for ∆γ ≠ 0
for ∆γ = 0

. (5.7.50a-c)

Step 9

Obtain the final values of the equivalent plastic strain, total stress, and the back-
stress,

γ(t + ∆t) = γ(t) + ∆γ ,

ττ̂(t + ∆t) =
��
� 1 −

τtr
µ ∆γ� �������

� �
� sŝ tr + ββ̂(t) ,

ββ̂(t + ∆t) = ββ̂(t) + ∆β
τtr
sŝ tr� ��� . (5.7.51a-c)

Example: As an illustration, consider the power law for the isotropic flow-stress

τ = τc (1 + γ /γ0)
N (γ. /γ. 0)

m , (5.7.52a)

with τc = µ /100, γ0 = 0.005, N = 0.1, and γ. 0 = 0.0001. As an example consider
the following time history for the corotational deformation rate D̂:

D̂ =

����
0
0
1

0
− 1

0

0
0
0 	 ��


 × 10−2 , 0 ≤ t < 50 ,

D̂ =
√ � �2
1�����

����
0
1
1

0
− 1

1

0
0
0 	 ��


 × 10−4 , 50 ≤ t < 5050 ,

D̂ =
√ � �2
1�����

����
0
0

− 1

1
1
0

0
1
0 	 ��


 × 10−2 , 5050 ≤ t < 5100 . (5.7.52b-d)

The components of the deviatoric stress ττ̂′ obtained using the generalized
radial-return method with various numbers of timesteps are shown in Figures
5.7.3 and 5.7.4 for m = 0.01 and m = 0.05, respectively. It is seen in Figure
5.7.3 that when the rate sensitivity is low, the generalized radial-return method
gives very accurate results for the effective stress. However, the stress com-
ponents are not very accurate when there is any rotation in the stress orientation.
To improve the calculation of the stress orientation, consider the following alter-
native to the radial-return method.

Perfect-plasticity Path: Alternative to the radial-return method is the perfect-
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Figure 5.7.3

Time history of deviatoric stress components for rate-dependent plasticity
model (5.7.52a) with m = 0.01, and deformation history (5.7.52b-d), using the
generalized radial-return method

plasticity assumption. However, unlike for the rate-independent flow, there may
be no yield surface for the rate-dependent flow27. On the other hand, most rate-
dependent materials undergo very little plastic deformation when the effective
shear stress is less than a reference stress. Hence, in addition to the flow rule
(5.7.36), it may be assumed that

γ. << d for τ < τd ≡ F(d, γ) . (5.7.53a)

This also implies that

γ. >> d , for τ > τd . (5.7.53b)

Condition (5.7.53) shows that the elastic deformation dominates when τ < τd
������������������

27 Some authors have introduced rate-dependent plastic deformation models with a yield condi-
tion, as discussed in Subsection 4.3.2 of Chapter 4.
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Figure 5.7.4

Time history of deviatoric stress components for rate-dependent plasticity
model (5.7.52a) with m = 0.05, and deformation history (5.7.52b-d), using the
generalized radial-return method

and hence, the stress state moves mostly parallel to the direction of D̂ in the
deviatoric stress space. On the other hand, when τ > τd, the plastic deformation
dominates, and hence the stress state moves mostly in the direction of µµ̂ in the
deviatoric stress space. Only if τ ∼∼ τd, then the stress state moves in the direc-
tion normal to µµ̂. Therefore, the perfect-plasticity-path assumption is reasonable
only after the stress magnitude attains the value τd.

Denote by ∆te the time that is taken for the effective stress to reach the
value τd. This depends on whether the initial effective stress τ(t) is greater or
less than τd. Note that, even if τ(t) is greater than τd, because of the dominant
plastic deformation, the effective stress drops to τd, regardless of whether it is
loading (D̂ : µµ̂ > 0) or unloading (D̂ : µµ̂ < 0).

Consider the integration of (5.3.13a) and (5.3.13d) from time te = t + ∆te

to te + ∆tp, where ∆tp = ∆t − ∆te. Assume that τ(te) ∼∼ τd. See Subsection 5.7.4 for
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the evaluation of Δte and ττττ(te). In this timestep, (5.3.13a) reduces to (5.7.24).
Then the orientation of the stress difference, μμ̂(te + ξ), is given by (5.7.25a).

Now, consider the integration of (5.7.22), using the plastic-
predictor/elastic-corrector method. In this method, first estimate the plastic
deformation rate by

γ. A(ξ) = d x(ξ) . (5.7.54a)

Then, in view of (5.7.25b), the increment of plastic strain is estimated as

ΔγA(ξ) =
A
d��� ln (z(ξ)) . (5.7.54b)

The errors in the estimated plastic strain rate and the increment of plastic strain
are assumed to be related by

γ. (ξ) = γ. A(ξ) − γ. er , Δγ(ξ) = ΔγA(ξ) − Δγer ,

γ. er = Δγer /Δt . (5.7.55a-c)

Integration of (5.7.28b), in view of (5.7.54) and (5.7.55), results in

τ(te + Δtp) = τ(te) + ΔβA + (μ + ΛA)Δγer , (5.7.56a)

where

ΔβA ≡
γ(t)
∫
γ

A

Λ(γ) dγ , γA ≡ γ(t) + ΔγA(Δt) , ΛA ≡ Λ(γA) . (5.7.56b-d)

A Taylor series expansion of the flow rule at (γ. A(Δt), γA) gives

τ(te + Δtp) = τA − ηAΔγer , (5.7.57a)

where

τA ≡ F(γ. A(Δt), γA) , ηA ≡ Δt
1���

∂γ.
∂F��� +

∂γ
∂F��� . (5.7.57b,c)

Substitute (5.7.57a) into (5.7.56a), to obtain

Δγer = μ + ΛA + ηA

τA − τ(te) + ΔβA������������� . (5.7.58)

Finally, the values of the stress difference and the backstress are given by

sŝ (te + Δtp) = τ(te + Δtp)μμ̂(te + Δtp) ,

ββ̂(te + Δtp) = ββ̂(te) + √��2 (ΔβA − ΛAΔγer)μμ̂(te + Δtp) . (5.7.59a,b)

Computational Steps: The necessary computational steps are summarized
below.

Step 1

Obtain the initial values of the stress difference and the dynamic critical stress,

sŝ (t) = ττ̂(t) − ββ̂(t) , τt ≡ τ(t) = {1⁄2 sŝ (t) : sŝ (t)}1⁄2 ,
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348 INTEGRATION OF CONTINUUM CONSTITUTIVE EQUATIONS

z1 = sinh(A ∆tp) + k cosh(A ∆tp) − k ,

µµ̂(t + ∆t) =
√

� �

2 z τ(te)
1� ������������� sŝ (te) +

z d

√
� �

2 z1� ������� D̂ . (5.7.63a-f)

Step 7

Estimate the plastic strain rate, plastic strain, flow stress, increment in the back
stress, and the hardening moduli at the end of the timestep,

γ. A = max{√
� �

2 µµ̂(t + ∆t) : D̂ , 0} , ∆γA =
A
1� ��� d ln (z) ,

γA = γ(t) + ∆γA , τA = F(γ. A, γA) , ∆βA =
γ(t)
∫
γ

A

Λ(γ) dγ ,

ΛA = Λ(γA) , ηA =
∆t
1� ���

∂γ.
∂F� ��� (γ. A, γA) +

∂γ
∂F� ��� (γ. A, γA) . (5.7.64a-g)

Step 8

Estimate the error in the estimated plastic strain increment, and obtain the final
values of the equivalent plastic strain, the stress difference, the backstress, and
the total stress,

∆γer =
µ + ηA + ΛA

τA − τ(te) + ∆βA������������������������� ,

γ(t + ∆t) = γA − ∆γer ,

τ(t + ∆t) = τ(te) − ∆βA + (µ + ΛA) ∆γer ,

sŝ (t + ∆t) = √
� �

2 τ(t + ∆t) µµ̂(t + ∆t) ,

ββ̂(t + ∆t) = ββ̂(t) + √
� �

2 (∆βA − ΛA ∆γer) µµ̂(t + ∆t) ,

ττ̂(t + ∆t) = sŝ (t + ∆t) + ββ̂(t + ∆t) . (5.7.65a-f)

The stress components obtained using the perfect-plasticity-path method for the
same example in Figures 5.7.3 and 5.7.4, with various numbers of timesteps, are
shown in Figures 5.7.5 and 5.7.6, for m = 0.01 and m = 0.05 respectively.
Essentially exact results are obtained for any number of timesteps, from 3 to
300.

5.7.4. Elasticity-dominated Deformation

In the previous two subsections, the perfect-plasticity-path method is used
when the deformation is dominated by plastic deformation. In rate-independent
plasticity, the deformation is regarded elastic in unloading and when the effec-
tive stress difference is less than the current value of the yield stress. In the
rate-dependent case with strain-rate softening or hardening, the stress path devi-
ates from the perfect-plasticity path even in loading. In that case, both elastic
and plastic deformations are involved essentially in all time increments.
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Figure 5.7.5

Time history of deviatoric stress components for rate-dependent plasticity
model (5.7.52a) with m = 0.01, and deformation history (5.7.52b-d), using the
perfect-plasticity-path method

Rate-independent Model: For rate-independent materials, the deformation is
purely elastic if the effective stress is less than the current yield stress. Consider
a time increment ∆t, and denote by ∆te, the portion of this time which it takes to
reach the yield surface. In this range, the rate of change of the stress difference
(5.3.13a) is

K ≡ sŝ
.

= 2 µ D̂ . (5.7.66a)

Therefore, the duration of the elastic deformation, ∆te, is obtained from

(ŝt + K ∆te) : (sŝ t + K ∆te) = 2 τy
2 (5.7.66b)

which yields

∆te = min

����
∆t ,

K : K
√
�����������������������������������
(sŝ t : K)2 + 2 K : K (τy

2 − τt
2) − sŝ t : K� ���������������������������������������������������������

	�

� , (5.7.66c)
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Figure 5.7.6

Time history of deviatoric stress components for rate-dependent plasticity
model (5.7.52a) with m = 0.05, and deformation history (5.7.52b-d), using the
perfect-plasticity-path method

where sŝ t = sŝ (t). The stress difference at the end of the period of the elastic
deformation is obtained as follows:

sŝ (t + ∆te) = sŝ (t) + K ∆te . (5.7.66d)

The timestep during which plastic deformation is dominant is then given by

∆tp = ∆t − ∆te . (5.7.66e)

Rate-dependent Model: In the case of rate-dependent materials, there is no
yield surface. However, if a material element is subjected to a constant defor-
mation rate for a relatively long time, in the absence of strain hardening, the
effective stress difference would reach a value τd, given by

τd ≡ F(d, γ(t)) . (5.7.67)
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Step 10

Estimate the error in the estimated plastic strain increment and correct the incre-
ments in the plastic strain and the backstress,

∆γer =
µ + ΛA + ηA

τA − τe + ∆βA� ��������������������� , ∆γ = max {0, ∆γA − ∆γer} ,

∆β =
�� �
∆βA − ΛA ∆γer

0
for ∆γ ≠ 0
for ∆γ = 0

. (5.8.63a-c)

Step 11

Obtain the final values of the equivalent plastic strain, total stress, and the back-
stress,

γ(t + ∆t) = γ(t) + ∆γ , ττττθ(t + ∆t) =
��
� 1 −

τtr
µ ∆γ� ������� � �	 str + ββββ(t) ,

ββββθ(t + ∆t) = ββββ(t) + ∆β
τtr
str� ��� . (5.8.64a-c)

As an illustration, consider the isotropic power-law hardening model (5.7.38),
and consider the following piecewise constant velocity gradient:

L =

�

�
0
0
1

0
−1

0

0
0
0 � 


� × 10−2 , 0 ≤ t < 50 ,

L =

�

�
0

100.707
0.707

0
− 0.707
− 99.707

0
0
0 � 


� × 10−4 , 50 ≤ t < 100 ,

L =

�

�
0
0

− 0.707

− 0.293
0.707

0

0
1.707

0 � 


� × 10−2 , 100 ≤ t < 150 . (5.8.65a-c)

In this example, the strain-rate sensitivity parameter m = 0.05 is used. The com-
ponents of the deviatoric stress ττττ′, obtained by using the generalized radial-
return method with various numbers of timesteps, are shown in Figure 5.8.4. As
is seen, the generalized radial-return method gives accurate results even with
large timesteps when the rotation is of the order of the distortion. However,
when the rotation is orders of magnitude larger than the distortion, small time-
steps are required for accurate results. To improve the results for large rota-
tions, as an alternative to the generalized radial-return method, consider the
perfect-plasticity path method. The computational steps for this method are
given in the following:

Computational Steps for the Perfect-plasticity Path Method:

Step 1

Obtain the initial values of the stress difference and the dynamic critical stress,

s(t) = ττττ(t) − ββββ(t) , τ(t) = {1⁄2 s(t) : s(t)}1⁄2 ,
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Another interesting feature of this experiment is the formation of tension
cracks at four locations in the interior surface of the collapsed cylinder.
Dynamic void collapse and void growth in single crystals under uniaxial loads
have been studied analytically by Nemat-Nasser and Hori (1987), revealing that
tension cracks may be produced (even in a ductile material) during unloading, in
a direction normal to the applied compression, even if the sample has not been
subjected to any externally applied tensile stresses. This prediction has been
verified experimentally by Nemat-Nasser and Chang (1990) for single-crystal
copper as well as other metals, e.g., mild steel and iron, using a split Hopkinson
bar dynamic loading technique. A similar phenomenon occurs in the cylinder-
collapse experiment. This is also verified by computational modeling which
shows that very high tensile stresses can develop at certain critical points on and
near the inside surface of the collapsed cylinder. This and many other issues
relating to anisotropic deformation of thick-walled cylinders of single-crystal
copper, under initially uniform dynamic loading, are discussed in Nemat-Nasser
et al. (1998d), where the effect of the initial crystal orientation on the final col-
lapsed geometry is studied by numerical simulation.

6.5.14. Dislocation-based Model for bcc and fcc Crystals

In this case, use constitutive relation (6.5.18) for the fcc-case, and then
simply set a0 = 0 to obtain the necessary equations for the bcc-case. To simplify
calculations, rewrite (6.5.18) as

τα = τa + Ψα , Ψα = τ̂0 f [1 − X1/q]1/p ,

f =
�
� �

1
1 + a0 [1 − (T/Tm)2] γn

for bcc
for fcc

,

X = −
G0

k T� ����� ln
γ. 0

γ. α f������� . (6.5.50a-d)

Hence, it is assumed that the athermal stress is the same for all slip systems, and
that its dependence on slip is only through the total accumulated slip, γ, defined
by (6.5.1e). Now, using the chain rule of differentiation, coefficients in
(6.5.41a) are easily evaluated.

To this end, note that

∂γ
∂τa� ����� =

γ
n1� ��� (τa − c0) ,

∂γ
∂f� ��� =

γ
n��� (f − 1) ,

∂T
∂f����� = − 2a0 (T/Tm

2) γn ,
∂γ
∂X� ����� =

G0 f
− k T� ���������

∂γ
∂f� ��� ,

∂T
∂X� ����� =

T
X� ��� −

G0 f
k T�������

∂T
∂f����� ,

∂γ. α
∂X������� = −

G0 γ. α
k T� ��������� .

∂X
∂Ψα� ������� = −

p q
τ̂0 f� ����� [1 − X1/q] p

1 − p	 	
	
	
	
X q

1 − q	 	
	
	
	
. (6.5.51a-g)
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geometric line defects in crystals, produces inelastic strains accompanied by an
accommodating elastic lattice distortion, leading to a compatible total deforma-
tion. Indeed, since interatomic forces cannot support large elastic distortions of
the lattice, dislocations are generated to relieve the elastic deformation and to
minimize the associated elastic energy of the crystal. In essentially all known
crystalline materials, the lattice elastic strains are infinitesimally small, being of
the order of 10−3. The plastic strains associated with the dislocations that are
present in a crystal, are also very small. Therefore, large plastic deformations of
crystals occur by the motion of dislocations that are constantly generated and
annihilated, as atoms rearrange and matter flows through the lattice, and not by a
continuous storage of dislocations. For example, an annealed cylindrical sample
of copper of centimeter dimensions, can be deformed, say, at a 600K tempera-
ture, to a thin sheet of submillimeter thickness, while its final dislocation density
is about the same as that of its initial undeformed state, i.e., about 107 cm−2. A
three-orders of magnitude increase in this dislocation density, means an average
dislocation spacing of about 0.1µm, which is rather small, but does not
correspond to significant plastic strains.

It is therefore essential to clearly distinguish between the total plastic
deformation of a crystalline solid, which can be hundreds or even thousands of
percent, and the plastic strains due to the presence of dislocations within a crys-
talline solid, which generally is very small, of the order of the associated elastic
strains. While the analysis of the total finite deformation of crystals must be
performed within a fully nonlinear setting, as discussed in Section 6.2, small
deformation, linearized kinematics is generally sufficient to deal with the elasto-
plastic deformation due to the existing dislocations within crystals or polycrys-
tals.78

In view of the above comments, it is generally unnecessary to distinguish
between the configurations of a crystal without and with dislocations, i.e., the
particle positions in an undislocated and in the corresponding dislocated crystal
are indistinguishable. The displacement gradient field, ∇∇∇∇ �

× u = ui,j(x) ej
�
× ei, of a

dislocated crystal may thus be additively split into an elastic, ββββe, and a plastic,
ββββp (due to the presence of dislocations), part,

(∇∇∇∇ �
× u)T = ββββe + ββββp ,

ui,j = βij
e + βij

p . (6.5.62a)

The plastic part, ββββp, is associated with the dislocations that are present on vari-
ous slip planes of the crystal or the crystals in a polycrystal. The dislocation
density tensor is now defined by Kro

..
ner’s equation,79

�����������������������������������

78 The shear strain that produced the shearband in Figure 6.5.12a is about 910%, while the resi-
dual plastic (and elastic) strains due to the dislocations that remain in the material (Figure 6.5.12b),
are fractions of one percent.

79 See Mura (1987, page 53). Note that Mura defines the positive direction of the normal to the
S + towards the S − , whereas in the present work the opposite direction is used; see Figure 6.1.7,
page 392. Hence, the minus sign in Mura’s formula.
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corresponding three reciprocal vectors, say, bi; see Subsection 1.3.1, page 19.
The lattice vectors and their reciprocals are related by

ai � bj = δi
j . (6.A.1a)

a3

a2a2 /k
a3 / l

V

a1 /h
a1

O

Figure 6.A.1

A unit cell defined by lattice vectors ai,
i = 1, 2, 3, and the plane (hkl) normal to V =
h b1 + k b2 + l b3

Hence, it follows that

b1 =
V

a2 × a3
����������� ,

b2 =
V

a3 × a1
����������� ,

b3 =
V

a1 × a2
����������� , (6.A.1b-d)

where V = a1 � a2 × a3 is the volume of the unit cell formed by the lattice vectors.
With the aid of permutation symbol, eijk, (6.A.1b-d) are more concisely written
as,

bi =
2 V
1

� ����� eijk aj × ak ,

ai × aj = V eijk bk . (6.A.1e,f)

Miller Indices for Directions: A direction can be defined by a vector, say v,
through the origin of the unit cell. Let vi define the components of this vector in
the lattice coordinates,

v = v1 a1 + v2 a2 + v3 a3 . (6.A.2a)

In general, these components need not be integers or even rational numbers. In
application to crystals, however, it is generally assumed that the directions of
interest can be defined with rational components. Hence, multiplying the vector
v by the least common denominator of its (rational) components, say m, a new
vector m v is obtained which has integer components,

m v1 = u , m v2 = v , m v3 = w , (6.A.2b-d)

brannon
Rectangle




