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Abstract

Hollow circular cylinders of single crystal copper are subjected to externally applied explosive loads that cause the collapse of
the cylinder. Then numerical simulations are performed to understand the deformation process that leads to localized deformation
and tensile cracking, observed in partially collapsed cylinders of fcc single crystals. The results of experiments and numerical
simulations are in good agreement. © 1998 Published by Elsevier Science S.A. All rights reserved.
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1. Introduction

The objective of this research is to study the localiza-
tion of the inelastic flow and the possible subsequent
crack propagation in single crystals by experiment and
by numerical simulations; focusing on the anisotropic
inelastic response and mechanisms of possible crack
initiation and growth, produced upon unloading by the
residual inhomogeneous plastic strains. A detailed
study of such inelastic flow localization and crack prop-
agation is important, since strain localization in single
crystals can lead to global instability.

In a recent paper, an experimental technique, called
the ‘thick-walled cylinder (TWC) method’, has been
used by Nesterenko et al. [1] and Bondar and
Nesterenko [2] to study strain localization at high strain
rates. The strain rate in the TWC method can be much
higher than the strain rate that can be achieved by
conventional methods, such as the Hopkinson bar tech-
nique. Nesterenko and Bondar [3] observed shear-band-
ing and cracking under high strain rate conditions in
various polycrystalline materials, such as copper, stain-
less steel, aluminum and niobium.

The dynamic void collapse and void growth in single
crystals under uniform far-field stresses were studied
analytically by Nemat-Nasser and Hori [4], showing
that tension cracks can be produced upon unloading in
a direction normal to the applied compression. Nemat-
Nasser and Chang [5] followed this analytical work and
experimentally illustrated the basic phenomenon using
the Hopkinson bar technique. They observed that
cracks propagate into the recrystallized grains at the
nominal strain rate of :104 s−1, which corresponds to
local strain rates exceeding 106 s−1, near the
boundaries of a collapsing void. Nemat-Nasser and
Chang discuss the mechanism of the formation of
Lomer–Cottrell sessile dislocations during loading,
which can then lead to fracturing during unloading.
Their SEM microscopy seems to support this explana-
tion. Cuitino and Ortiz [6] seek to explore the possibil-
ity of vacancy condensation as a void-nucleating
mechanism in fcc single crystals at large plastic defor-
mations, and suggest that high strain rates inhibit void-
nucleation and promote brittle fracture in the
experiments of Nemat-Nasser and Chang [5]. An earlier
analysis of Nemat-Nasser and Hori [4] showed develop-
ment of high tensile stresses at the tips of a collapsed
void, once the applied compression is removed.

Here, we study the localization of inelastic flow and
the subsequent crack propagation in fcc single crystals
under uniform high strain rate compressive loading,
using the TWC method. Then, numerical simulations,
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are performed to explore the details of this process. A
new algorithm to simulate finite deformation of fcc
single crystals, proposed by Nemat-Nasser and Oki-
naka [7] is implemented into the finite-deformation
code, DYNA2D, and used for the simulation. Our
results support the conclusion of Nemat-Nasser and
Hori [4], that tensile cracking is caused by unloading in
the presence of inhomogeneous plastic strains.

2. Experimental procedure and results

Externally applied explosives are used to collapse a
thick-walled cylinder of single crystal copper. The spec-
imen consists of a hollow cylindrical tube of single
crystal copper encased in a polycrystal copper jacket.
The single crystal tube is cut from a single crystal rod,
using a spark erosion technique. Then the sample is
loaded by detonating an explosive which surrounds the
specimen cell. The magnitude of the explosive is care-
fully chosen to ensure either full or partial collapse of
the hollow cylindrical specimen. The size and shape of
the hollow cylindrical specimen, and the overall experi-
mental set-up for the TWC method are shown in Figs.
1 and 2, respectively. The initial configuration of the
single crystal is measured from the remaining part of
the sample using X-ray diffraction. The axis of the
cylinder is found to be in the [1 3 4]-direction.

Fig. 2. Experimental set-up, showing half of the cross-section through
the center line of the cylindrical specimen.

In the first experiment, the hollow cylindrical single-
crystal specimen is fully collapsed under conditions that
have been discussed by Nesterenko and Bondar [3]. The
detonation speed measured in this particular experi-
ment was D=4030 m s−1 (explosive-ammonite plus
sand (10 vol.%) with a density 1 g cm−3), with the
diameter of the explosive charge being 60 mm. The
detonation pressure is estimated using

P=
rD2

k+1
, k:3, (2.1)

which gives 4 GPa. The initial radial velocity of the
inner boundary of the specimen is measured by the
non-contact electromagnetic method and is :200
m s−1, leading to the time of collapse of :8 ms.

Optical micrographs of the overall and the central
region of the collapsed specimen are shown in Figs. 3

Fig. 1. Shape and size of the specimen used in the experiment. Fig. 3. Optical micrograph of the fully collapsed specimen.
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Fig. 4. Optical micrograph of the central part of the fully collapsed
specimen. The central curved crack is the folded inner boundary of
the collapsed cylinder. Lines around the central curve are flow
localization zones.

3. Numerical simulations

3.1. Kinematics and constituti6e relations

In this subsection, first the fundamentals of the gen-
eral kinematics, on which the numerical calculation is
based, are briefly reviewed. The general kinematics of
the elastic–plastic deformation of crystals at finite
strains are given by Hill [8], Rice [9], Hill and Rice [10]
and others. Reviews are given by Nemat-Nasser [11],
Asaro [12] and Havner [13].

The total deformation gradient, F, is divided into a
non-plastic (elastic plus rigid-body rotation) deforma-
tion gradient, F*, and a plastic deformation gradient,
Fp, as follows:

F=F*Fp. (3.1)

The velocity gradient is defined by

L=F: F−1, (3.2a)

where the dot stands for the time derivative. Similarly,
the non-plastic velocity gradient, L*, and the plastic
velocity gradient, Lp, are given by

L*=F: *F*−1, (3.2b)

and

L. p=F: *Fp−1, (3.2c)

where the hat is used to denote that the velocity gradi-
ent is measured with respect to the initial configuration
of the crystal lattice. Substitution of Eq. (3.1) and Eqs.
(3.2b) and (3.2c) into Eq. (3.2a) yields

L=L*+F*L. pF*−1. (3.2d)

It is assumed in this work that the plastic deforma-
tion is solely due to the crystalline slip. Hence, the
plastic velocity gradient, L. p is given by the sum of the

and 4, respectively. Fig. 3 shows that the outer
boundary of the collapsed specimen is non-circular. The
lines of the shear-banding, running from the outer
boundary to the collapsed inner boundary, are also
seen in this figure. In Fig. 4, the central curved lines are
the folded inner boundary of the cylinder. Lines of the
flow localization are also observed around the central
folds in this picture. Since the shape of the outer part of
the jacket of the specimen and the loading condition
are axially symmetric, it can be concluded that the
localization is caused by the anisotropic inelastic re-
sponse of the single crystal.

Next, the loading condition is estimated for a par-
tially collapsed specimen, and is used to simulate the
crack initiation and propagation which occur upon
unloading. To ensure an incomplete void collapse, a
suitably smaller explosive loading was chosen. The
outer diameter of the explosive charge was decreased to
55 mm, resulting in a smaller detonation speed D:
3030 m s−1. According to Eq. (2.1), this gives a detona-
tion pressure of :2.3 GPa, leading to an incomplete
collapse.

The central part of the specimen is shown in Fig. 5.
The outer boundary of single crystal develops a non-
circular shape. The inner boundary, which has a circu-
lar shape initially, develops a rectangular shape, and
cracks are initiated at four corners of the rectangle.
Shear-bands develop around the four cracks, and also,
from the outer boundary to the upper and bottom
segments of the inner boundary of the cylinder. How-
ever, the mechanism of crack initiation and propaga-
tion is not revealed by these observations. Hence,
numerical simulations are used to examine this process
and to develop a detailed understanding of the
phenomemon.

Fig. 5. Optical micrograph of the partially collapsed specimen, central
part.
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Fig. 6. Final deformation state of the fully collapsed specimen at 8.1 ms: (a) overall configuration, and (b) central part.
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Fig. 7. Final deformation state of the (134)-cylinder at 40.0 ms: (a) overall configuration, and (b) central part. Loading is removed at 1.1 ms in this
simulation.



S. Nemat-Nasser et al. / Materials Science and Engineering A249 (1998) 22–29 27

slips of all slip systems. Since the fcc single crystals have
four slip planes and three slip directions on each plane,
it follows that

L. p= %
4

a=1

%
3

a=1

g; (aa) l0
(aa), (3.3)

where g; (aa) is a slip rate, and l0
(aa) is the ath slip

direction on the ath slip plane, which is defined by

l0
(aa)=s0

(aa)�n0
(a). (3.4)

Here, s (aa) and n (a) are the slip direction and the slip
plane normal, respectively, and the subscript 0 stands
for the initial configuration of the lattice. From Eqs.
(3.2d) and (3.3), we obtain

L=L*+ %
4

a=1

%
3

a=1

g; (aa) l (aa). (3.5a)

Since the elastic strains are generally small, it is reason-
able to neglect them in comparison with the lattice
rotation. Hence, set

l (aa)=R*l0
(aa) R*T, (3.6)

where R* is the lattice rotation tensor. With small
elastic strains, the non-plastic velocity gradient becomes

L*=o; +oV*−V*o+V*, (3.7)

where o is the lattice elastic strain, measured in the
rotated lattice, and V* is the lattice spin rate defined by

V*=R: * R*T. (3.8)

The symmetric and antisymmetric parts of Eq. (3.5a)
are given by

D=D*+ %
4

a=1

%
3

a=1

g; (aa) p (aa), (3.5b)

and

W=W*+ %
4

a=1

%
3

a=1

g; (aa) w (aa), (3.5c)

where D* and W* are the symmetric and antisymmet-
ric parts of the non-plastic velocity gradient, L*, re-
spectively. Also, p (aa) and w (aa) are the symmetric and
antisymmetric parts of the slip system tensor, l (aa),
respectively.

Linear elasticity is used to model the elastic lattice
distortion,

s
9
=C* :D*, (3.9)

where s
9

and C* are the Jaumann rate of the Cauchy
stress and the elasticity tensor in the rotated lattice,
respectively.

The rate-dependent slip model with the power law is
employed to model the crystalline slip. Hence, the slip
rate of the (aa)th slip system is assumed to be given by

g; (aa)=g; 0
(aa) sgn(t (aa))

) t (aa)

tY
(aa)

)m
, (3.10)

where t (aa)=�s, p (aa)�is the resolved shear stress, and

sgn(x)=
! 1 for x]0

−1 for xB0.
(3.11)

In equation Eq. (3.10), tY
(aa) and g; 0

(aa) are the critical
resolved shear stress and the reference value of the slip
rate, respectively. A linear strain-hardening model is
considered. The critical resolved shear stress, tY

(aa), is
thus expressed as

tY
(aa)= %

4

b=1

%
3

b=1

h(g)(bb)
(aa) g (bb), (3.12a)

where

g= %
4

a=1

%
3

a=1

& �g; (aa)� dj. (3.12b)

While thermal softening can be included in the power
law model, as in Nemat-Nasser et al. [14], this effect is
neglected in the present case, since the flow stress of
copper is relatively small and it’s heat conductivity is
rather high.

An efficient algorithm to solve Eq. (3.5b) incremen-
tally for a given constant D has been proposed by
Nemat-Nasser and Okinaka [7]. In the present work,
this new algorithm is implemented into the finite defor-
mation code DYNA2D, and is used to simulate the
cylinder collapse experiments numerically.

4. Numerical simulation of the fully collapsed cylinder

The initial configuration of the lattice in this simula-
tion is chosen to correspond to the experiment, i.e. the
(1 3 4)-plane. The x- and y-axes are arbitrarily chosen
to coincide with the [25 3( 4( ]-, and [0 4 3( ]-directions in
terms of the Miller indices. In the numerical simulation,
the inner boundary is defined as a contact surface
without friction.

The loading condition is defined in terms of the
velocity of the nodes on the outer boundary of the
single-crystal cylinder. Hence, nodes on the outer
boundary move towards the center of the specimen
with the prescribed velocity, maintaining a circular
shape for this boundary. The time-variation of the
radial velocity, 6r(t), is approximated by

6r(t)=A0 e−a(t− t0)2

. (4.1)

Next, the material property used in the simulation is
discussed. Although the single-crystal copper is elasti-
cally anisotropic, its effect for large plastic strains and
rotations is insignificant relative to that of the inelastic
anisotropy, and hence, elastically isotropic material is
assumed. The shear modulus and Poisson’s ratio are
m=45 GPa, and n=0.33, respectively. The rate sensi-
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tivity power in Eq. (3.10) is set at m=101. The initial
value of the critical resolved shear stress is assumed to
be 0.25% of the elastic shear modulus, so that tY0

=
112.5 MPa. For the strain hardening, the rate of change
of the critical resolved shear stress is

t; (aa)= %
4

b=1

%
3

b=1

h (bb)
(aa) �g; (bb)�. (4.2)

Here,

h (bb)
(aa) =h(g)(d (bb)

(aa) +r(1−d (bb)
(aa))), (4.3)

where

h(g)=Í
Ã

Ã

Á

Ä

0.003125m

0.003125m

1.0+3.7(g−0.32)

g50.32

g\0.32,
(4.4)

g= %
4

a=1

%
3

a=1

& �g; (aa)� dj, (4.5)

and r=1.25 is used; see Rashid and Nemat-Nasser [15].
This assumes that the latent hardening exceeds self-
hardening by 25%. With this strain hardening, the
critical resolved shear stress levels off at three times its
initial value, after a 200% equivalent strain.

In the first simulation, the cylinder is fully collapsed
at 8.1 ms. The overview and the magnified central part
of the deformed mesh are shown in Fig. 6. In Fig. 6(a),
the outer boundary of the collapsed specimen has a
circular shape. As will be shown for the partially col-
lapsed case, this is due to the plastic flow which contin-
ues after a complete collapse. The central part of the
collapsed mesh in Fig. 6(b) is shown for comparison
with the results of the experiment, Fig. 4. These two
figures show good agreement, and hence, it is con-
cluded that the central curve in the experiment is the
collapsed and folded inner boundary of the cylinder
and not cracks originating from the center. The lines of
the flow localization are also observed around the
central part of the collapsed cylinder.

In order to study the process of flow localization, the
deformation states at 6.75, 7.25 and 7.75 ms were calcu-
lated. The flow localization initiates at :6.74 ms, when
the initially circular inner boundary develops localiza-
tion at four corners. The inner boundary then develops
two parallel straight and two semicircular edges. It is
observed that, among the four segments, two shrink
much faster after initiation of the localization. Al-
though the loading on the outer boundary is uniform,
the anisotropic inelastic response of the single crystal
leads to a non-uniform shrinking speed of the inner
boundary, and hence, localization at the junction of the
resulting segments.

In numerical simulations, it is clearly observed that,
upon unloading, large tensile stresses develop within the
localized regions. These stresses are sufficient to cause
crack initiation at the inner surface of the collapsed
cylinder. This observation supports earlier results of
Nemat-Nasser and Hori [4].

5. Numerical simulation of the partially collapsed
cylinder

Partially collapsed cylinders (Fig. 5) offer unique
features whose study requires special consideration.
Crack initiation on unloading in single crystals under
uniform compression, is one such feature that is exam-
ined in this subsection. The initial configuration of the
lattice in computer calculations coincides with the ex-
perimental sample, the cross-sectional area being the
(1 3 4)-plane. Again, the x- and y-axes are arbitrarily
chosen, so that they coincide with the[25 3( 4( ]-, and
[0 4 3( ]-directions, respectively. Nodes on the outer
boundary are moved toward the center of the specimen
with the given velocity, according to Eq. (4.1), until 1.1
ms. The given loading condition is then removed, ren-
dering the outer boundary traction-free. This leads to
an incomplete collapse of the cylinder.

The central part of the deformed mesh at 40 ms, are
shown in Fig. 7(b). Fig. 7(b) shows excellent correlation
with the results of the experiment, shown in Fig. 5. It is
noteworthy that the similarity between the simulation
and the experiment is observed not only in the flow
localization around the inner boundary, but also in the
shape of the outer boundary after unloading. The non-
circular shape of the outer boundary of the unloaded
specimen, shown in Fig. 3, has been one of our main
concerns, since it might have been caused by the varia-
tion of the explosive loading, through a uniform load-
ing may be expected. However, comparison with
simulation reveals that this geometry is caused by the
anisotropic inelastic response of the single crystal.

6. Conclusion

Localization of inelastic flow in fcc single crystals is
studied experimentally and by numerical simulations.
The TWC method is used in the experiment. Numerical
simulations are performed to examine the deformation
process which leads to the observed final configuration.
The new algorithm, proposed by Nemat-Nasser and
Okinaka [7], is implemented into the finite deformation
code, DYNA2D, in order to perform these simulations.
Various initial configurations of the lattice are exam-
ined in the numerical simulation to study their effect on
the flow localization phenomena.
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The flow localization in fcc single crystals due to
their anisotropy inelastic response is observed experi-
mentally. The process of the localization is studied in
detail through numerical simulations, and the compari-
son of the results with those of experiments shows
remarkable agreements.

Crack initiation and propagation in fcc single crystals
are observed in experiments, and crack initiation is
successfully simulated by numerical calculations.
Through the numerical simulation, it is concluded that
cracks are produced during the unloading process by
the tensile stresses which are produced by large hetero-
geneous plastic deformations that occur during the
loading regime, which supports a similar result reported
earlier by Nemat-Nasser and Hori [4].
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