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Abstract

Rigorous upper and lower bounds for the e�ective moduli are obtained for heterogeneous piezoelectric materials, by

generalizing the Hashin±Shtrikman variational principle to the coupled problems of piezoelectricity. The key in obtain-

ing these bounds is the choice of the ®eld variables used in the variational principles, i.e., the strain tensor and the elec-

tric displacement vector or the stress tensor and the electric ®eld vector. Universal theorems, originally established for

(uncoupled) mechanical and non-mechanical problems, are generalized for application to piezoelectricity problems, and

the boundary conditions which provide upper and lower bounds for the average energy are identi®ed. These theorems

lead to rigorous bounds for the e�ective piezoelectric moduli that are de®ned through the relation between the average

®eld quantities. Computable bounds are derived from Eshelby's tensors for the piezoelectricity problems. These tensors

are obtained by applying the Fourier transform to the Green's functions of an unbounded homogeneous body. Ó 1998

Elsevier Science Ltd. All rights reserved.

1. Introduction

Micromechanics has been used to predict the e�ective properties of heterogeneous materials, particularly,
to obtain upper and lower bounds for the overall properties of composites. The estimate of such bounds
were initiated in pioneering works by Hashin and Shtrikman (1962), and later by Walpole (1966), KroÈner
(1977), and Willis (1977); see more recent works by Francfort and Murat (1986), Milton and Kohn (1988),
Milton (1990), and Torquato (1991, 1992); see also Nemat-Nasser and Hori (1993, 1995), Balendran and
Nemat-Nasser (1995), and Munashinghe et al. (1996). Essentially the same procedure has been applied
to predict bounds for both (uncoupled) mechanical and non-mechanical properties, such as e�ective moduli,
and electric, magnetic, or di�usive properties. However, much less attention has been paid to the coupled
mechanical and non-mechanical properties; see, for instance, Dunn and Taya (1994) and Benveniste (1997).

In this paper, we consider the case of piezoelectricity as an illustrative example of predicting bounds for
coupled mechanical and non-mechanical properties. The formulation presented here can be applied to oth-
er cases of coupled problems. The ®eld variables are: the displacement, strain, and stress, �u; �; r�, for the
mechanical behavior; and the electric potential, electric ®eld, and electric displacement, �u; p; q�, for the
non-mechanical response.
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Symbolic notation is mainly used in this paper; a vector or tensor quantity is denoted by a bold face
letter. The ®rst-, and second-order contractions, and the tensor product are denoted by � and :, and 
, re-
spectively, and $ stands for the spatial derivative; for instance, $ � r and $
 u correspond to orij=oxi and
ouj=oxi in index notation.

2. Summary of piezoelectric ®eld equations

We summarize three sets of ®eld equations which govern the spatial variation of the ®eld variables,
�u; �; r� and �u; p; q�. The ®rst set ensures mechanical equilibrium and the absence of free charge,

$ � r�x� � 0; $ � q�x� � 0: �1�
The second set de®nes the strain tensor, �, and the electric ®eld, p, in terms of the displacement vector, u,
and the electric potential, u,

��x� � 1

2
�$
 u�x� � �$
 u�x��T�; p�x� � ÿ$u�x�: �2�

The third set is constitutive, relating the strain and electric ®eld, � and p, to the stress and electric displace-
ment, r and q; for coupled 1 mechanical and electric problems, the following linear relations relate � and q
to r and p:

r�x� � C�x�: ��x� �H�x� � q�x�; p�x� � HT�x�: ��x� � R�x� � q�x�: �3�
where 2 C , H , and R are fourth-, third-, and second-order tensors, satisfying the following symmetry prop-
erties: Cijkl � Cjikl � Cijlk, Hijk � Hjik, and Rij � Rji. The inverse relations corresponding to Eq. (3) are

��x� � D�x�: r�x� � L�x� � p�x�; q�x� � LT�x�: r�x� � K�x� � p�x�;
where D � �C ÿH � K 0 �HT�ÿ1

, K � �RÿHT: Cÿ1: H�ÿ1
, and L � ÿ�C 0�ÿ1

: H � K 0.
Coupled governing equations for the mechanical displacement, u, and the electric potential, u, can be

derived from the three sets of the ®eld equations, Eqs. (1)±(3). To obtain the governing equations, we re-
write the constitutive relations (3), which relate ��; q� and �r; p�, in an alternative form which relates ��; p�
and �r; q�, i.e.,

r�x� � C 0�x�: ��x� � L0�x� � p�x�; q�x� � ÿ�L0�x��T: ��x� � K 0�x� � p�x�; �4�
where C 0 � Dÿ1, K 0 � Rÿ1, and L0 � H � K 0. Then, substituting Eqs. (2) and (4) into Eq. (1), we obtain the
governing equations as follows:

$ � �C 0�x�: �$
 u�x��� ÿ $ � �L0�x� � �$u�x��� � 0;

ÿ $ � ��L0�x��T: �$
 u�x��� ÿ $ � �K 0�x� � �$u�x��� � 0;
�5�

see Fig. 1 for a schematic view of the three sets of the ®eld equations for the statical and kinematical quan-
tities. To simplify expressions, we will omit the argument x of the ®eld variables in the following sections.

1 Constitutive relations (3) were originally proposed by Lothe and Barnett (1977); see also Lothe and Barnett (1976). In this form, the

coupling moduli retain a certain symmetry, i.e., Hijkqk and Hijk�ij occur in the expressions for rij and pk , respectively. This is in contrast

to the representation (4) which uses anti-symmetric coupling moduli, i.e., L0ijkpk and ÿL0ijk�ij occur in the expressions for rij and qk .
2 Superscript T on a third-order tensor stands for transpose in a symbolic sense so that HT: � corresponds to Hkli�kl.
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3. Averaging and universal theorems

In this section, the averaging and two universal theorems, originally established for uncoupled mechan-
ical or non-mechanical problems (Nemat-Nasser and Hori, 1993), are generalized and applied to the cou-
pled problems. The two universal theorems play a key role in computing bounds for the coupled e�ective
piezoelectric moduli.

3.1. Averaging theorems

Averaging theorems give the volume average of a ®eld variable in terms of the corresponding surface
data. There are three sets of the averaging theorems for uncoupled mechanical and non-mechanical prob-
lems, namely, the averaging theorem for the kinematical quantities (� and p), the statical (or dynamical)
quantities (r and q), and their products which relate to the energy (r : � and q � p). These averaging theo-
rems are applied to a material of arbitrary constitutive properties (linear or non-linear), since they are de-
rived from Eqs. (1) and (2). Thus, they hold for the coupled problems.

We ®rst present the averaging theorems for the kinematical and statical quantities, introducing a repre-
sentative volume element (RVE) of volume V bounded by oV . The surface data, whether prescribed or not,
are denoted by a superscript 0 on the corresponding quantity, e.g., u0, t0, u0, and q0, respectively, stand for
surface 3 displacements, tractions, electric potential, and electric ¯ux. The volume average of the associated
®eld variable, taken over the RVE, is then given in terms of the surface data as follows:

h�i � 1

2V

Z
oV

�m 
 u0 � u0 
 m dS�; hri � 1

V

Z
oV

x
 t0 dS;

hpi � ÿ 1

V

Z
oV

mu0 dS; hqi � 1

V

Z
oV

xq0 dS;
�6�

where m is the (outer) unit normal vector on oV . The proof is straightforward: use 4 the Gauss theorem and
the ®eld equations, Eqs. (1) and (2).

3 The tractions and electric ¯ux satisfy t0 � m � r and q0 � m � q on oV .
4 The four identities in Eq. (6) are all exact and valid independently of the constitutive properties. The same comments also apply to

Eqs. (7) and (8).

Fig. 1. Field equations of piezoelectricity.
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The averaging theorems for the product of the strain and stress and the product of the electric ®eld and
electric displacement are also derived from Eqs. (1) and (2), as follows:

hr : �i � 1

V

Z
oV

t0 � u0 dS; hq � pi � ÿ 1

V

Z
oV

q0u0 dS: �7�

Making use of the averaging theorems, Eqs. (6) and (7), we obtain the following identity which gener-
alizes Hill's identity (Hill, 1963) to the coupled problems:

hr: �i � hq � pi� � ÿ hri: h�i � hqi � hpi� � � 1

V

Z
oV

�u0 ÿ x � h�i� � �t0 ÿ m � hri� � �u0 ÿ x � hpi��q0 ÿ m � hqi�ÿ �
dS:

�8�
When the right side of Eq. (8) becomes negligibly small compared with hr: �i � hq � pi or hri: h�i � hqi � hpi,
we can assume that hr : �i � hq � pi is almost the same as hri: h�i � hqi � hpi. Hence, the e�ective moduli re-
lating �h�i; hpi� to �hri; hqi� yield the average coupled energy, hr : �i � hq � pi. It is observed that the right
side of Eq. (8) is negligibly small when V is statistically homogeneous; the proof is essentially the same as
that for the case 5 of the uncoupled problems.

Instead of the statistical homogeneity, the equality hr : �i � hq � pi � hri: h�i � hqi � hpi results when the
boundary data are such that the right side of Eq. (8) vanishes. For instance, the following two boundary
data are of this class:

�u0; q0� � �x � E; m �Q�; �9�
and

�t0; u0� � �m � R; x � P�; �10�
where �E;Q� and �R;P� are constants. It follows from Eq. (6) that Eqs. (9) and (10) lead to
�h�i; hqi� � �E;Q� and �hri; hpi� � �R;P�, respectively, as originally obtained by Hill (1963) for the uncou-
pled problems. The boundary data which make the right side of Eq. (8) zero will be referred to as the Hill-
type.

3.2. Universal theorems

Examine general nonlinear cases when the material of a heterogeneous RVE admits 6 a potential func-
tion, /, which depends on the strain tensor, �, and the electric displacement, q, such that the stress, r, and
the electric ®eld, p, are given by

r � o/
o�
�x; �; q�; p � o/

oq
�x; �; q�: �11�

This includes both the linear and non-linear cases. Note that the potential / is de®ned in terms of the strain
� and the electric displacement q, instead of the electric ®eld p.

Using the micropotential, /, we de®ne a macropotential, U, for V subject to the Hill-type boundary data,
as follows:

5 See, for instance, Nemat-Nasser and Hori (1993).
6 It is not possible to express a suitable potential in terms of the strain � and the electric ®eld p, using the constitutive relations (4); the

product of the stress and strain and the product of the electric ®eld and displacement are given by � : �C 0: �� L0 � p� and

p � �ÿ�L0�T: �� K 0 � p�, respectively, and the coupling terms in these expressions, � : L0 � p and ÿp � �L0�T: �, vanish when these two

products are summed.
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U�E;Q� � h/�x; ��x; E;Q�; q�x; E;Q��i; �12�
where E and Q are macrostrain and macro-electric displacement given by �E;Q� � �h�i; hqi�, and ��; q� are
regarded as functions of �E;Q�. It is easily shown that this macropotential yields the corresponding mac-
rostress and macro-electric ®eld, �R;P� � �hri; hpi�, as follows:

R � oU
oE
�E;Q�; P � oU

oQ
�E;Q�: �13�

The proof is straightforward. It follows from the property of the Hill-type boundary data that the deriva-
tive of the right side of Eq. (12) with respect to E can be expressed as

o�
oE

: r� oq

oE
� p

� �
� o�

oE

� �
: hri � oq

oE

� �
: hpi � oh�i

oE
: hri � ohqi

oE
: hpi:

By de®nition, we have

oh�i
oE
� 1�4s�;

ohqi
oE
� 0;

where 1�4s� is the fourth-order (symmetric) identity tensor. Hence, Eq. (13)1 is obtained. In a similar man-
ner, we can verify Eq. (13)2 using the derivative of U with respect to Q.

For given constant �E;Q�, there are various Hill-type 7 boundary data satisfying �h�i; hqi� � �E;Q�. The
macropotentials associated with these boundary data are not the same, unless the solid is statistically ho-
mogeneous. Hence, the value of the macropotential of a ®nite heterogeneous V varies depending on the
boundary data. We examine this dependence of the macropotential on the boundary data.

Suppose that the micropotential / is convex, i.e., for any two sets of the strain and the electric displace-
ment, ���a�; q�a�� �a � 1; 2�, / satis®es

/ ��1�; q�1�
ÿ �ÿ / ��2�; q�2�

ÿ �
P ��1� ÿ ��2�ÿ �

:
o/
o�

��2�; q�2�
ÿ �� q�1� ÿ q�2�

ÿ � � o/
oq

��2�; q�2�
ÿ �

; �14�

where the equality holds only for ���2�; q�2�� � ���1�; q�1��. Let ���1�; q�1�� � �G; qG� � be the strain and electric
displacement ®elds due to any general boundary data, and ���2�; q�2�� � �RP ; qRP� � be those due to the uni-
form boundary data de®ned by Eq. (10), where superscripts G and RP emphasize that quantities are asso-
ciated with general boundary data and the boundary data of Eq. (10), respectively.

Consider now all such general boundary data which produce the same overall average strain and electric
displacement, i.e., let

�G

 �

; qG

 �ÿ � � �RP


 �
; qRP

 �ÿ � � �E;Q�:

It then follows from inequality (14) that

URP �E;Q� < UG�E;Q�: �15�
Note that (15) is valid whether or not the general boundary data are of the Hill-type. To prove the inequal-
ity (15), take the volume average of (14) and obtain

7 Note that when V is subjected to Hill-type boundary conditions, the macropotential can be de®ned as the volume average of the

micropotential. Then, the inner product of �h�i; hqi� and �hri; hpi� equals hr : �� q � pi�, relating to energy.
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UG�E;P� ÿ URP �E;P� > 1

V

Z
oV

uG ÿ uRP
ÿ � � �m � R� � m � qG ÿ qRP

ÿ �ÿ ��x � P�ÿ �
dS

� �G ÿ �RP

 �

: R� qG ÿ qRP

 � � P;

where Eqs. (7) and (10) are used. From �Gh i � �RPh i and qGh i � qRPh i, inequality (15) is now obtained.
Similar results can be obtained if a micropotential 8, w, for r and p is used. The corresponding macro-

potential is then de®ned for V by

W�R;P� � w x; r�x; R;P�; p�x; R;P�� �h i; �16�
where R and P are the corresponding macrostress and macro-electric ®eld, given by �R;P� � �hri; hpi�. This
macropotential has the following three properties (like U).
1. For the Hill-type boundary data, the macropotential yields the macrostrain and macro-electric displace-

ment, as follows:

E � oW
oR
�R;P�; Q � oW

oP
�R;P�: �17�

2. The value of the macropotential depends on the type of boundary data, even though these data produce
the same macrostress and macro-electric ®eld.

3. When the micropotential is convex, the macropotential satis®es

WEQ�R;P� < WG�R;P�; �18�
where WG and WEQ are the macropotential for any general boundary data and for the uniform boundary
data de®ned by Eq. (9), respectively.

Table 1 is a summary of the results which relate to the two macropotentials, U and W. From inequalities
(15) and (18) the following two universal theorems are now obtained:

Universal Theorem I. For an RVE whose microconstituents admit a convex micropotential, /��; q�; among all
boundary data which produce the same average strain and electric displacement, �h�i; hqi� � �E;Q�; the
boundary data of Eq. (10) associated with the uniform stress and electric ®eld, render the total macropotential
U�E;Q� an absolute minimum.

8 The micropotential w is related to / through the following Legendre transform: w� / � r : �� q � p.

Table 1

Micropotential and macropotential

Micropotential /��; q� w�r; p�
Gradient r � o/

o� � � ow
or

p � o/
oq

q � ow
op

Macropotential U�E;Q� W�R;P�
Gradient hri � oU

oE
h�i � oW

oR

hpi � oU
oQ

hqi � oW
oP

Universal theorems UG > URP WG > WEQ
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Universal Theorem II. For an RVE whose microconstituents admit a convex micropotential, w�r; p�; among all
boundary data which produce the same average stress and electric ®eld, �hri; hpi� � �R;P�; the boundary data
of Eq. (9) associated with the uniform strain and electric displacement, render the total macropotential
W�R;P� an absolute minimum.

It should be emphasized that Eqs. (13) and (17) with macroquantities de®ned as simple volume averages
of the microquantities, hold only for the Hill-type boundary data, whereas inequalities (15) and (18) are
valid for any general boundary data.

3.3. Application of universal theorems

When the material is linear, the micropotentials, / and w, are expressed in terms of �C ;H ;R� or
�D;L;K� as

/��; q� � 1

2
� : C : �� � : H � q� 1

2
q � R � q;

w�r; p� � 1

2
r : D : r� r : L � p� 1

2
p � K � p:

�19�

In this form, / or w is positive-de®nite and convex, as shown by Lothe and Barnett (1977).
For given �E;Q� or �R;P�, the macropotentials are then expressed in terms of the e�ective moduli

�CG
;H

G
;R

G� which satisfy

rG

 � � C

G
: E �H

G �Q; pG

 � � H

G
� �T

: E � R
G �Q;

or in terms of �DG
;L

G
;R

G� which satisfy

�G

 � � D

G
: R� L

G � P; qG

 � � L

G
� �T

: R� K
G � P;

as follows:

UG�E;Q� � 1

2
E: C

G
: E � E: H

G �Q � 1

2
Q � RG �Q;

WG�R;P� � 1

2
R: D

G
: R� R: L

G � P � 1

2
P � KG � P;

�20�

see Fig. 2 for the choice of ®eld variables used in determining �CG
;H

G
;R

G� or �DG
;L

G
;K

G�. Here, super-
script G emphasizes that quantities are for general boundary data. It should be recalled that the e�ective
moduli de®ned through the relations between �h�i; hqi� and �hri; hpi� satisfy Eq. (20) if the boundary data
are of the Hill-type. In general, however, the moduli de®ned through the energy relations do not coincide
with the moduli de®ned directly by relating the average ®eld variables; see Nemat-Nasser and Hori (1993).
In what follows, we assume that the boundary data are of the Hill-type.

There are various Hill-type boundary data satisfying �h�i; hqi� � �E;Q� or �hri; hpi� � �R;P� for given
�E;Q� or �R;P�. The resulting macropotentials necessarily depend on the boundary data, as do the result-
ing e�ective moduli. Theorems I and II provide strict bounds for this class of e�ective moduli, through the
following inequalities:

1

2
E : C

RP
: E � E : H

RP �Q � 1

2
Q � RRP �Q <

1

2
E: C

G
: E � E: H

G �Q � 1

2
Q � RG �Q;

1

2
R: D

EQ
: R� R: L

EQ � P � 1

2
P � KEQ � P <

1

2
R: D

G
: R� R: L

G � P � 1

2
P � KG � P;

�21�

for any pair of �E;Q� or �R;P�, where, again, superscript EQ or RP emphasizes that the corresponding
quantities are for the uniform boundary data (9) or (10), respectively.
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Combining the above two inequalities, we obtain

1

2
E: C

RP
: E � E: H

RP �Q � 1

2
Q � RRP �Q <

1

2
E: C

G
: E � E: H

G �Q � 1

2
Q � RG �Q <

1

2
E: C

EQ
: E

� E: H
EQ �Q � 1

2
Q � REQ �Q: �22�

Similar inequalities are obtained in terms of the compliance tensors. These are the universal inequalities for
general coupled mechanical/non-mechanical problems. When the moduli are de®ned through the energy re-
lations, then they are valid for any general boundary data, not necessarily of the Hill-type. They thus hold
for a ®nite volume as well as for an RVE.

An RVE used to compute the e�ective moduli can be regarded to be representing a statistically ho-
mogeneous solid, if the di�erence of the left side and the right side of inequality (22) is negligibly small,
i.e., if

UEQ�E;Q� ÿ URP �E;Q�
UEQ�E;Q� � 1; �23�

where

U����E;Q� � 1

2
E: C

���
: E � E: H

��� �Q � 1

2
Q � R��� �Q:

4. Hashin±Shtrikman variational principles for piezoelectricity

In this subsection, the Hashin±Shtrikman variational principles are generalized and applied to the cou-
pled piezoelectricity problems, taking the following three steps.

Fig. 2. Pair of ®eld variables used in deriving universal inequalities.
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1. Assume the Hill-type boundary data for the RVE.
2. Homogenize the RVE using the equivalent inclusion method.
3. Establish functionals whose Euler equations coincide with the consistency conditions of the equivalent

inclusion method.
From the variational principles computable upper or lower bounds for the e�ective moduli are then ob-
tained.

4.1. Generalized Hashin±Shtrikman variational principles

Suppose that an RVE of volume V and boundary oV is subjected to Hill-type boundary conditions; see
Eq. (8). For the Hill-type boundary data, we haveZ
oV

�td � ud � qdpd� dS � 0; �24�

where ud ; td� � � uÿ x � h�i; m � �rÿ hri�� � and pd ; qd� � � p ÿ x � hpi; m � �qÿ hqi� �. For simplicity, Eq. (24) is
called the admissibility condition. When Eq. (24) is satis®ed, then the e�ective moduli de®ned through the
average energy relations coincide with those obtained by directly relating the averaging ®eld variables. The
quantities �d , rd , pd , and qd are called the disturbance strain, stress, electric ®eld, and electric displacement,
respectively.

The boundary-value problem of the heterogeneous RVE with the Hill-type boundary data satisfying
Eq. (24), is solved using the equivalent inclusion method. To this end, a homogeneous body, denoted by
V 0, with constant reference moduli, �C0;H0;R0�, is considered. Within V 0, suitable eigenstress and ei-
gen-electric ®eld, �r�; p��, are introduced such that the resulting stress, strain, electric ®eld, and electric dis-
placement in this homogeneous body coincide with those of the original heterogeneous RVE. The stress
and electric ®eld in the homogeneous V 0 are given by

r�x� � C0: ��x� �H0 � q�x� � r��x�;
p�x� � �H0�T: ��x� � R0 � q�x� � p��x�;

�25�

where the dependence on the variable x is shown explicitly. For the ®eld variables in the homogeneous
V 0 to coincide with those of the original heterogeneous V , we must have the following consistency con-
ditions:

C�x�: ��x� �H�x� � q�x� � C0: ��x� �H0 � q�x� � r��x�;
HT�x�: ��x� � R�x� � q�x� � �H0�T: ��x� � R0 � q�x� � p��x�:

�26�

For given �r�; p��, the solution of the boundary value problem for V 0 can be (formally) expressed in
terms of suitable Green's functions. In view of Eq. (25), the governing equations for the mechanical dis-
placement and the electric potential ®elds, �u; u�, are

$ � �C00: �$
 u�x�� ÿ $ � �L00 � �$u�x�� � b�x� � 0;

ÿ $ � ��L00�T: �$
 u�x��� ÿ $ � �K00 � �$u�x�� � c�x� � 0;
�27�

where C00 � C0 ÿH0 � K00 � �H0�T, K00 � �R0�ÿ1
, and L00 � H0 � K00, and b and c are body forces and elec-

tric charges which are produced by �r�; p��, as

b�x� � $ � �r��x� ÿ L00 � p��x��; c�x� � ÿ$ � �K00 � p��x��:
In terms of the Green's functions that correspond to the volume V, the solution �u; u� is formally expressed
as
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u�x� � x � E � ud�x�; u�x� � x � P � ud�x�;
where

ud�x� �
Z
V

G2�x; y� � b�y� � G1�x; y�c�y� dVy;

ud�x� �
Z
V

g2�x; y� � b�y� � g1�x; y�c�y� dVy;

and �E;P� are the average strain and electric ®eld. The Green's functions, �G2; g2� and �G1; g1�, yield the
disturbance displacement and electric potential, respectively, due to unit body force and electric charge.
These Green's functions depend on the shape of the boundary of V. The strain and the electric displacement
in Eq. (26) are now expressed as ��; q� � E � �d ;Q � qd� �, where

�d�x� � ÿC�x; r�; p��; qd�x� � ÿc�x; r�; p��:
Here, �C; c� are integral operators which are de®ned by �G2; g2� and �G1; g1�, and give the disturbance strain
and electric displacement. The consistency conditions (26) are rewritten as

DCÿ1�x�: r��x� � DHÿ1�x� � p��x� � C�x; r�; p�� ÿ E � 0;

DHÿT�x�: r��x� � DRÿ1�x� � p��x� � c�x; r�; p�� ÿQ � 0;
�28�

where

DC�x� � C�x� ÿ C0
ÿ �ÿ H�x� ÿH0

ÿ � � R�x� ÿ R0
ÿ �ÿ1 � H�x� ÿH0

ÿ �T
;

DH�x� � ÿDCÿ1�x�: H�x� ÿH0
ÿ � � R�x� ÿ R0

ÿ �ÿ1
;

DR�x� � R�x� ÿ R0
ÿ �ÿ H�x� ÿH0

ÿ �T
: C�x� ÿ C0
ÿ �ÿ1

: H�x� ÿH0
ÿ �

:

Eqs. (28) are integral equations for �r�; p��. The solution of the boundary-value problem for the heteroge-
neous RVE is given by the solution of the integral equations Eq. (28).

Taking advantage of Eq. (24), we de®ne a functional for arbitrary eigenstress and eigen-electric ®eld,
�s�;/��, such that the corresponding Euler equations coincide with Eq. (28). This functional is given by

J�s�;/�; C; c; E;Q� � 1

2
s�: DCÿ1: s� � DHÿ1 � /� � C�s�;/��ÿ �


�/� � DHÿT: s� � DRÿ1 � /� � c�s�;/��ÿ ��ÿ �hs�i: E � h/�i �Q�: �29�
Indeed, since Eq. (24) leads to d hs�: C� /� � ci� � � 2 ds�: C� d/� � ch i, vanishing of the ®rst variation of J
for arbitrary variations �ds�; d/�� yields Eq. (28), i.e.,

ds�: DCÿ1: s� � DHÿ1 � /� � Cÿ E
ÿ �� d/� � DHÿT: s� � DRÿ1 � /� � cÿQ

ÿ �
 � � 0:

Like a functional used in the Hashin±Shtrikman variational principles, the above de®ned J has the fol-
lowing two properties:
1. The stationary value of J gives the e�ective moduli of V .
2. The stationary value becomes the minimum when C0;H0;R0

ÿ �
are chosen such that the set

�C0 ÿ C ;H0 ÿH ;R0 ÿ R� is 9 positive-de®nite.

9 If the scalar quantity �: C : �� 2�: H � q� q � R � q is positive for any ��; q� 6� �0; 0�, then the set �C ;H;R� is called positive-de®nite.
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The proof of the ®rst property is straightforward: since the exact eigenstress and eigen-electric ®elds,
�r�; p��, that satisfy Eq. (28), render J stationary, the stationary value is

J�r�; p�� � ÿ 1

2
r�: E � p� �Qh i � 1

2
E: �C0 ÿ C

G�: E � E: �H0 ÿH
G� �Q � 1

2
Q � �Rÿ R

G� �Q; �30�

where �CG
;H

G
;R

G� are the e�ective moduli which are de®ned through

hri � C : E �H �Q; hpi � H
T
: �� R �Q:

The second property is proved by using a fact that if C0 ÿ C ;H0 ÿH ;R0 ÿ R
ÿ �

is positive-de®nite, then the
integral operators �C; c� associated with the averaging operator h�:�i produce a positive number for any
�s�;/��, i.e.,

s�: DCÿ1: s� � DHÿ1 � /� � C
ÿ �� /�: DHÿT: s� � DRÿ1 � /� � c

ÿ �
 �
> 0:

This is because Eq. (24) leads to

s�: C� /� � ch i � C: C0: C� 2C �H0: c� c � R0 � c
 �
> 0;

when C0;H0;R0
ÿ �

are positive-de®nite.
The two properties of J lead to the following bound for the e�ective moduli:

1

2
E: �C0 ÿ C

G�: E � E: �H0 ÿH
G� �Q � 1

2
Q � R0 ÿ R

G
� �

�Q < J�s�;/�; C; c; E;Q�: �31�

Here, C 0;H0;R0
ÿ �

is chosen such that C0 ÿ C ;H0 ÿH ;R0 ÿ R
ÿ �

is positive-de®nite.
An alternative functional and the related inequalities can be obtained by using the dual formulation, i.e.,

by switching ��; q� and �r; p�. When eigenstrain and eigen-electric displacement ®elds, ���; q��, are pre-
scribed in the homogeneous V 0 instead of �r�; p��, the resulting disturbance stress and electric ®elds are
formally expressed in terms of suitable integral operators as rd � ÿK���; q�� and pd � ÿk���; q��, where
�K; k� are determined by using the formal Green's functions �G2; g2� and �G1; g1�. The boundary-value
problem for the heterogeneous V is now replaced by the integral equations of the consistency conditions
for ���; q��,
DDÿ1�x�: ���x� � DLÿ1�x� � q��x� � K�x; ��; q�� ÿ R � 0;

DLÿ1�x�: ���x� � DKÿ1�x� � q��x� � k�x; ��; q�� ÿ P � 0;
�32�

where �R;P� � hri; hpi� �, and

DD�x� � D�x� ÿD0
ÿ �ÿ L�x� ÿ L0

ÿ � � K�x� ÿ K0
ÿ �ÿ1 � L�x� ÿ L0

ÿ �
;

DL�x� � ÿDDÿ1�x�: L�x� ÿ L0
ÿ � � K�x� ÿ K0

ÿ �ÿ1
;

DK�x� � K�x� ÿ K0
ÿ �ÿ L�x� ÿ L0

ÿ �T
: D�x� ÿD0
ÿ �ÿ1

: L�x� ÿ L0
ÿ �

:

Using the admissibility of the boundary data, Eq. (24), we can de®ne a functional for arbitrary eigenstrain
and eigen-electric displacement, �e�;w��, such that the corresponding Euler equations coincide with the con-
sistency conditions (32), as follows:

I�e�;w�; K; k; R;P� � 1

2
e�: DDÿ1: e� � DLÿ1 � w� � K�e�;w��ÿ �


�w� � DLÿT: e� � DKÿ1 � w� � c�e�;w��ÿ ��ÿ R: he�i � P � hw�i� �: �33�
This I is stationary for �e�;w�� � ���; q��, and the stationary value is
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I���; q�� � ÿ 1

2
��: R� q� � Ph i � 1

2
R: �D0 ÿD

G�: R� R: �L0 ÿ L
G� � P � 1

2
P � �K ÿ K

G� � P; �34�

where �DG
;L

G
;K

G� are the e�ective moduli de®ned through

h�i � D
G
: R� L

G � P; hqi � L
G

� �T

: R� K
G � P:

When D0 ÿD;L0 ÿ L;K0 ÿ K
ÿ �

is positive-de®nite, the stationary value of I is the minimum, and hence the

following bound for D
G
;L

G
;K

G
� �

is obtained:

1

2
R: �D0 ÿD

G�: R� R: �L0 ÿ L
G� � P � 1

2
P � K0 ÿ K

G
� �

� P < I�e�;w�; K; k; R;P�: �35�
The functional I is used to solve the same boundary-value problem for V as the functional J , and hence

these two are related; for instance, the following equality holds when �e�;w�� and �R;P� are given by

�ÿ D0: s� � L0 � /�ÿ �
;ÿ� L0

ÿ �T
: s� � K0 � /��� and �C0: E �H0 �Q � hs�i; H0

ÿ �T
: E � R0 �Q � h/�i�:

I�e�;w�; K; k; R;P� ÿ 1

2
R: D0: R� R: L0 � P � 1

2
P � K0 � P

� �
� J�s�;/�; C; c; E;Q� ÿ 1

2
E: C0: E � E: H0 �Q � 1

2
Q � R0 �Q

� �
: �36�

Since �DG
;L

G
;K

G� are the inverse 10 of �CG
;H

G
;R

G� and the positive-de®niteness of �D0 ÿD;
L0 ÿ L;K0 ÿ K� leads to the negative-de®niteness of C0 ÿ C ;H0 ÿH ;R0 ÿ R

ÿ �
, two inequalities (31)

and (35) now lead to upper or lower bounds for, say, C
G
;H

G
;R

G
� �

, as follows: if �C0 ÿ C ;H0 ÿH ;
R0 ÿ R� is positive- (negative-) de®nite, then

1

2
E: C

G
: E � E: H

G �Q � 1

2
Q � RG �Q > �or <� ÿ J�s�;/�; C; c; E;Q� � 1

2
E: C0: E

� E: H0 �Q � 1

2
Q � R0 �Q: �37�

4.2. Consequence of universal theorems

In general, it may not be easy to explicitly determine Green's functions, �G2; g2� and �G1; g1�, and the
associated integral operators, �C; c� or �K; k�, for a ®nite region V. However, using Theorems I and II of
Section 3, computable bounds are obtained in terms of the integral operators, �C1; c1� or �K1; k1�, de-
®ned from the Green's functions, �G12; g12� and �G11; g11�, of an in®nitely extended homogeneous do-
main. These bounds are established in two steps: ®rst we consider the uniform boundary data and apply
Theorems I and II, and then we relate the resulting bounds to those obtained by applying the integral op-
erators of the in®nite homogeneous domain.

First, consider a case when the RVE is subjected to the uniform boundary conditions given by Eq. (9).
The resulting strain and electric displacement are �EQ; qEQ� �, with the average values �E;Q�. Theorem II
now yields the following inequality:

10 The inverse means that if D
G
;L

G
;K

G
� �

satisfy E � D
G

: R� L
G � P and Q � L

G
� �T

: R� K
G � P, then �CG

;H
G
;R

G� yield

R � C
G

: E �H
G �Q and P � �HG�T: E � R

G �Q.
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1

2
�EQ: C : �EQ � �EQ: H � qEQ � 1

2
qEQ � R � qEQ

� �
<

1

2
E � �d
ÿ �

: C : E � �d
ÿ ��

� E � �d
ÿ �

: H � Q � qd
ÿ �� 1

2
Q � qd
ÿ � � R � Q � qd

ÿ ��
: �38�

A computable bound is obtained by combining this inequality with the inequalities (37).
Next, let C0;H0;R0

ÿ �
be constant reference moduli such that C ÿ C0;H ÿH0;Rÿ R0

ÿ �
is negative-def-

inite, i.e., for any pair of ��; q� and ��0; q0�,

0 >
1

2
��ÿ �0�: C ÿ C0

ÿ �
: ��ÿ �0� � ��ÿ �0�: H ÿH0

ÿ � � �qÿ q0� � 1

2
�qÿ q0� � Rÿ R0

ÿ � � �qÿ q0�:

If ��0; q0� are replaced by DCÿ1: s� � DHÿ1 � /�;DHÿT: s� � DRÿ1 � /�ÿ �
with arbitrary �s�;/��, the average

of the above inequality taken over V 0 yields

0 >
1

2
�: C ÿ C0
ÿ �

: �� �: H ÿH0
ÿ � � q� 1

2
q � Rÿ R0
ÿ � � qÿ �s�: �� /� � q�

�
� 1

2
s�: DCÿ1: s� � s�: DHÿ1 � /� � 1

2
/� � DRÿ1 � /�

�
:

Hence, comparing this inequality with the right side of Eq. (38), we obtain

1

2
�EQ: C : �EQ � �EQ: H � qEQ � 1

2
qEQ � R � qEQ

� �
<

1

2
E: C0: E � E: H0 �Q

� 1

2
Q � R �Q ÿ 1

2
s�: DCÿ1: s� � DHÿ1 � /�ÿ �ÿ s�: �d � 2E

ÿ �ÿ

�/� � DHÿ1: s� � DRÿ1 � /�ÿ �ÿ /� � qd � 2Q

ÿ ���� 1

2
rd : �d � 1

2
qd � pd

� �
: �39�

Now, we evaluate the disturbance strain and electric displacement using integral operators, �C1; c1�, as-
sociated with the Green's functions of the homogeneous in®nite domain. As in the case of the uncoupled
problems, the following relations hold for any arbitrary ellipsoidal RVE:

ÿ C1h i; ÿ c1h i� � � �0; 0�; �40�
ÿ C0: C1 ÿH0 � C1 � s�d

 �

; ÿ H0
ÿ �T

: C1 ÿ R0 � c1 � /�d
D E� �

� �0; 0�; �41�

C1: C0: C1 �H0: c1
ÿ �� c1 � ��H0�T: C1 � R0 � c1�

D E
< 0; �42�

where �C1; c1� are evaluated for s�d ;/�d
ÿ � � s� ÿ hs�i;/� ÿ h/�i� �; see Appendix A for a proof the above

properties. Hence, �d ; qd� � can be replaced by ÿC1 s�d ;/�d
ÿ �

;ÿc1 s�d ;/�d
ÿ �ÿ �

, and the following inequality
is obtained from Eq. (39):

1

2
�EQ: C : �EQ � �EQ: H � qEQ � 1

2
qEQ � R � qEQ

� �
<

1

2
E: C0: E � E: H0 �Q

� 1

2
Q � R0 �Q ÿ J s�;/�; C1; c1; E;Q� �:

The functional J in the right side is computable in terms of the Green's functions of the homogeneous in-
®nite domain. Since the left side of Eq. (39) is replaced by the e�ective moduli, �CEQ

;H
EQ
;R

EQ�, it follows
that when the RVE is subjected to the uniform boundary conditions given by Eq. (9), we have
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1

2
E: �CEQ ÿ C0�: E � E: �HEQ ÿH0� �Q � 1

2
Q � �REQ ÿ R0� �Q < ÿJ s�;/�; C1; c1; E;Q� �: �43�

In essentially the same manner, Theorem I is used to produce computable bounds using the Green func-
tions of the homogeneous in®nite domain. Theorem I is written as

1

2
rRP : D: rRP � rRP : L � pRP � 1

2
pRP � K � pRP

� �
<

1

2
R� rd
ÿ �

: D: R� rd
ÿ �� R� rd

ÿ �
: L � P � pd

ÿ ��
� 1

2
P � pd
ÿ � � K � P � pd

ÿ ��
; �44�

where rRP ; pRP� � are the stress ®eld and the electric ®eld when V is subjected to the uniform boundary data
given by Eq. (10). When D0;L0;K0

ÿ �
are chosen such that DÿD0;Lÿ L0;K ÿ K0

ÿ �
are negative-de®nite,

the right side of Eq. (44) is evaluated, as

1

2
R: �DRP ÿD0�: R� R: �LRP ÿ L0� � P � 1

2
P � �KRP ÿ K0� � P < ÿI e�;w�; K1; k1; R;P� � �45�

for any arbitrary �e�;w��, where �DR/
;L

RP
;K

RP � are the e�ective moduli of the RVE subjected to the uni-
form boundary conditions given by Eq. (10), and K1; k1� � are integral operators associated with
�G12; g12� and �G11; g11�, satisfying the same properties as given by Eqs. (40)±(42).

It should be noted that the e�ective moduli �CRP
;H

RP
;R

RP � which are the inverse of �DRP
;L

RP
;K

RP � are

almost the same as �CEQ
;H

EQ
;R

EQ� when V is statistically homogeneous. Therefore, the e�ective moduli of
the statistically homogeneous RVE are bounded by Eqs. (43) and (45). In view of Eq. (37), we ®nally obtain
bounds for these e�ective moduli, denote by C ;H ;R

ÿ �
, as follows: if C0 ÿ C ;H0 ÿH ;R0 ÿ R

ÿ �
is positive-

(negative-) de®nite, then

1

2
E: C

G
: E � E: H

G �Q � 1

2
Q � RG �Q < �or >� ÿ J�s�;/�; C1; c1; E;Q�

� 1

2
E: C0: E � E: H0 �Q � 1

2
Q � R0 �Q: �46�

5. Computable bounds using Green's functions of in®nite body

We seek to compute the values of the bounds for the piezoelectric e�ective moduli which are formally
given by Eqs. (43) and (45). It should be noted that the existence 11 of Eshelby-type tensors (Eshelby,
1957) can be established for the coupled piezoelectricity problems, and, indeed, general expressions are ob-
tained for these tensors. After the existence of Eshelby's tensors for piezoelectricity is established, explicit
Fourier transform expressions of these tensors are given in this section. These expressions can be numer-
ically computed in a straightforward manner.

For simplicity, we use the following governing equations for the mechanical displacement and electric
potential, u and u, instead of Eq. (27):

$ � �C00: �$
 u�� ÿ $ � �L00: �$u�� � $ � r� � 0;

ÿ $ � �K00 � �$u�� ÿ $ � ��L00�T: �$
 u�� � $ � q� � 0:
�47�

11 Benveniste (1992) examines the existence of Eshelby's tensors for the piezoelectricity problem.
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where �r�; q�� are eigenstress and eigen-electric displacement.

5.1. Existence of Eshelby's tensors for piezoelectricity

Consider an unbounded uniform body, B. It is assumed 12 that eigenstress and eigen-electric displac-
ment, �r�; q��, are uniformly distributed within an ellipsoidal domain, X, contained in B.

Dunn and Wienecke (1996) have obtained the Green's function, �G12; g12� and �G11; g11�, for the un-
bounded transversely isotropic body; the constitutive relations with the transverse isotropy and the x3-axis
as the axis of symmetry are

r� �
q� �

� �
�

C00� �
L00� �

ÿ L00� �T
K00� �" #

W� � 0� �
0� � 1�3�

� �� �
�� �
p� �

� �
; �48�

where �r�T � �r11; r22; . . . ; r12�, �q�T � �q1; q2; q3�, ���T � ��11; �22; . . . ; �12�, and �p�T � �p1; p2; p3�. The matrices
�W � and �1�3�� are a diagonal matrix consisting of �1; 1; 1; 2; 2; 2� and a 3 ´ 3 unit matrix; see Appendix B for
explicit form of �C00�; �L00�; �K00�� �. The Green's functions are expressed in terms of the weighted distance pa-
rameters de®ned by

�Ra�2 � x2
1 � x2

2 � �max3�2; �49�
for a � 0; 1; 2; 3, where ma's are determined from the piezoelectric moduli.

Now, we consider the second-order derivative of the Green's functions; in component form, they are

o2G12
ik

oxjoxl
�xÿ y�; o2g12

i

oxjojl
�xÿ y�; o2G11

k

oxjoxl
�xÿ y�; o2g11

oxjoxl
�xÿ y�;

where x is a point at which the response is measured and y is a point at which a concentrated force or
charge is applied. The derivative is expressed in terms of polyharmonic functions of Ra's. Following
Walpole (1966), it is shown that the relevant integrals of the derivatives with respect to y are constants
when measured at x lying within X. Hence, the results yield Eshelby's tensors for the piezoelectricity
problem.

5.2. Expression of Eshelby's tensor for piezoelectricity

Once the existence of (constant) Eshelby's tensors for the piezoelectricity problem is established, these
tensors can be computed numerically by using the Fourier transform, even though analytic expressions
are not available. The required computation is straightforward. The governing equations (47) are solved
by taking the Fourier transform of u and u. The associated stain and electric ®elds are expressed as

12 The right sides of Eq. (47) are rewritten as $ � C00: �$
 u�ÿ �� b and $ � K00 � �$u�ÿ �� b, where b � $ � r� ÿ $ � L00 � �$u�ÿ �
and

b � $ � q� � $ � ��L00�T: �$
 u�� are regarded as body forces and electric charges. When r� and q� are uniform in X, by de®nition,

$ � r� and $ � q� produce body forces and electric charges which behave like delta functions across the boundary oX of X. The

remaining body forces and electric charges, ÿ$ � L00 � �$u�ÿ �
and $ � ��L00�T: �$
 u��, vanish in X, but smoothly decay outside of X.

Therefore, Eshelby's tensors for the coupled piezoelectricity problem are di�erent from those for the uncoupled mechanical and non-

mechanical problems, even if the same ellipsoidal domain with the same (uncoupled) moduli are considered.
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��x�
p�x�
� �

� 1

�2p�3
Z1
ÿ1

dVn

Z
X

dVy exp õn � �xÿ y�� �

�
sym�4� n
 A2�n� 
 n

� 	
: r��y� ÿ sym�3� n
 A1�n� 
 n

� 	 � q��y�
sym�3� n
 A1�n� 
 n

� 	ÿ �T
: r��y� � A0�n�fn
 ng � q��y�

" #
; �50�

where A2, A1, and A0 are a second-order tensor, a vector, and a scalar de®ned by

A2�n� � � ~C00�n� � 1

~K00�n� n
 n�ÿ1
; A1�n� � A0�n�n � � ~C00�n��ÿ1

;

A0�n� � 1

~K00�n� � ~L00�n� � � ~C00�ÿ1�n� � ~L00�n� ;
�51�

with 13 ~C00 � n � C00 � n, ~L00 � n � L00 � n, and ~K00 � n � K00 � n, and, in component form, sym�4�f�:�gijkl �
��:�ijkl � �:�jikl � �:�ijlk � �:�jilk�=4 and sym�3�f�:�gijk � ��:�ijk � �:�jik�=2. These ��; p� do not depend on x when
x is within X, i.e.,

��x�; p�x�� � � T4: r� ÿ T3 � q�; �T3�T: r� � T2 � q�
� �

; �52�

for any x in X. Here, �T4;T3;T2� are the fourth-, third-, and second-order Eshelby's tensors 14 for the pi-
ezoelectricity. These tensors can be computed by taking the volume average of Eq. (50) over X, as follows:

T4

T3

T2

264
375

T

� X

�2p�3
Z1
ÿ1

dVn g�n�g�ÿn�
sym4 n
 A2�n� 
 n

� 	
sym3 n
 A1�n� 
 n

� 	
A0�n�n
 n

264
375; �53�

where g is the g-integral 15 de®ned by

g�n� � 1

X

Z
X

exp�õn � x� dVx: �54�

When the coordinates are chosen to be parallel to the three axes of the ellipsoid of the lengths ai (i � 1; 2; 3),

g becomes g � 3� sin gÿ g cos g�=g3 with g �
��������������������������������������������������������
�n1a1�2 � �n2a2�2 � �n3a3�2�

q
.

For the transversely isotropic case, ~C00; ~L00; ~K00ÿ �
appearing in Eq. (51) are expressed in the following

matrix form:

13 These ~C00, ~L00, and ~K00 are a second-order tensor, a vector, and a scalar.
14 Whereas Eshelby's tensor for the mechanical problem relates eigenstrain to the disturbance strain, these �T4;T3;T2� relate

eigenstress and eigen-electric displacement to the disturbance strain and electric ®eld.
15 See Iwakuma and Nemat-Nasser (1983), who computed g for a case of periodic structure, using the Fourier transform of the

characteristic function for X; see also Nemat-Nasser and Hori (1993), and Mura (1987).
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~C00
h i

�
C00

1111�n1�2 � C00
1212�n2�2 � C00

1313�n3�2 C00
1122 ÿ C00

1212

ÿ �
n1n2 �C00

1133 � C00
1313�n1n3

�C00
1122 ÿ C00

1212�n1n2 C00
1212�n1�2 � C00

1111�n2�2 � C00
1313�n3�2 �C00

1313 � C00
1313�n2n3

�C00
1133 � C00

1313�n1n3 �C00
1313 � C00

1313�n2n3 C00
3333�n3�3

2664
3775

~L00
h i

�
L00

113 � L00
131

ÿ �
n1n3

L00
113 � L00

131

ÿ �
n2n3

L00
131 �n1�2 � �n2�2
� �

� L00
333�n3�2

2664
3775; ~K00 � K00

11 �n1�2 � �n2�2
� �

� K00
33�n3�2;

see Appendix B for the matrix expression of C00;L00;K00ÿ �
in terms of �C00

ijkl; L
00
ijk;K

00
ij �. For the transversely

isotropic case, therefore, Eshelby's tensors for the piezoelectricity problem, namely, �C4;C3;C2�, can be de-
termined by using �A2;A1;A0� which are computed from Eq. (51) with the above ~C00; ~L00; ~K00ÿ �

.

6. Concluding remarks

For heterogeneous piezoelectric materials, rigorous upper and lower bounds for the e�ective moduli are
obtained by generalizing the Hashin±Shtrikman variational principle to the coupled problems of piezoelec-
tricity. The key in deriving the bounds is the choice of the ®eld variables, a pair of kinematics and statics
eigen-quantities, i.e., ���; q�� or �r�; p��. The generalized Hashin±Shtrikman variational principles are for-
mulated in essentially the same manner as the uncoupled mechanical or non-mechanical cases. Computable
bounds are obtained using the Green's functions of an unbounded homogeneous body, and Eshelby's ten-
sors for the piezoelectricity problem are determined.
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Appendix A. Properties of integral operators

The three properties of the integral operators �C1; c1�, Eqs. (40)±(42), are proved in essentially the same
manner as in the case of the uncoupled mechanical problems. As a consequence of the existence of Eshel-
by's tensor for the piezoelectricity problem, these operators satisfy

C1�s�;/��h i � C4: hs�i � C3 � h/�i;
c1�s�;/��h i � �C3�T: hs�i � C2 � h/�i;

for ellipsoidal V , where C4;3;2 are de®ned by Eq. (53). This yields Eqs. (40) and (41), since �s�d ;/�d� have
zero volume average. It is easily seen from the Fourier transform of �C1; c1� that the integration of the
following integration over a parallelepiped domain, U , vanishes as the size of the domain goes to in®nity.Z

U

C1: C0: C1 �H0: c1 ÿ s
ÿ �� c1 � ��H0�T: C1 � R0 � c1� dV � 0:
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Since C0;H0;R0
ÿ �

satisfy

C1: C0: C1 �H0 � c1ÿ �� c1 � ��H0�T: C1 � R0 � c1� � C1: C0: C1 � 2C1: H0 � c1 � c1 � R0 � c1 > 0

for any �C1; c1�, Eq. (42) is proved when �s�;/�� are prescribed only in X.

Appendix B. Transversely isotropic case

For the transversely isotropic case, the form of matrices which corresponds to C00;L00;K00ÿ �
are

�C00� �

C00
1111 C00

1111 ÿ 2C00
1212 C00

1133 0 0 0

C00
1111 ÿ 2C00

1212 C00
1111 C00

1133 0 0 0

C00
1133 C00

1133 C00
3333 0 0 0

0 0 0 C00
1313 0 0

0 0 0 0 C00
1313 0

0 0 0 0 0 C00
1212

2666666664

3777777775
;

�L00� �
0 0 0 0 L00

131 0

0 0 0 L00
131 9 0

L00
113 L00

113 L00
333 0 0 0

264
375; �K00� �

K00
11 0 0

0 K00
11 0

0 0 K00
33

264
375:
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